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Abstract— This paper explores the possibility of using convex
optimization to address a class of problems in visual servoing.
This work is motivated by the recent success of convex opti-
mization methods in solving geometric inference problems in
computer vision. We formulate the visual servoing problem
with feature visibility constraints as a convex optimization
of a function of the camera position i.e. the translation of
the camera. First, the path is planned using potential field
method that produces unconstrained but straight line path
from the initial to the desired camera position. The problem is
then converted to a constrained convex optimization problem
by introducing the visibility constraints to the minimization
problem. The objective of the minimization process is to find
for each camera position the closest alternate position from
which all features are visible. This algorithm ensures that the
solution is optimal. This formulation allows the introduction
of more constraints, like joint limits of the arm, into the
visual servoing process. The results have been illustrated in
a simulation framework.

I. INTRODUCTION

Convex optimization has been widely accepted as a pow-
erful tool to solve many engineering problems. Its use has
been extensively explored for solving a family of geometric
reconstruction problems in computer vision. A wide variety
of computer vision problems can be reformulated as convex
optimization problems by some algebraic manipulations.
Camera calibration [1], structure from motion [2], [3], [4],
[5], and image registration [6] are examples of computer vi-
sion problems which are reformulated and solved efficiently
as convex optimization. Convex functions, most importantly,
do not have the pitfall of local minima assuring that the
achieved solution always happens to be the optimal. They
employ efficient real-time algorithms for optimization like
sub-gradient methods, interior-point methods, etc. These ad-
vantages make convex optimization highly preferable when
compared to the traditional methods like Newton’s method.
The aim of this paper is to explore the utility of convex op-
timization to address a class of problems in visual servoing.

Visual Servoing is the problem of positioning the robotic
arm or a camera relative to a set of target features. As a
minimization problem, visual servoing is to move the robot
end-effector from an initial pose P ∈ R3×SO(3) to reach a
desired pose P∗. In other words, the problem is to minimize
an error vector e(s) of visual features s(P) by finding a
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velocity vector V that minimizes a cost function. Regulating
the task function to zero indicates the task completion.
Constraints may be added to the minimizer domain to satisfy
requirements like keeping features visible during the servoing
process. This work formulates and analyzes the problem of
visual servoing in the context of convex optimization to
see how these methods can help in solving the problem.
Convex optimization can produce a control signal with global
stability. In addition, it results a global path planning method
for visual servoing. Solving the visual servoing problem
by either of these two methods using convex optimization
requires a convex function of the rotation and translation pa-
rameters. Convex functions of the translation can be directly
constructed while convex function of rotation is still not yet
derived. We consider feature visibility constraints to find a
path that is closest to the straight line path by minimizing a
function of only the camera position i.e. the translation vector
of the camera pose, while keeping the rotation a constant as
computed by the geodesic planner.

In this paper, we use convex optimization to plan a path
that ensures the globally optimal solution while all the
features used are always visible in the image. Path planning
includes the computation of the intermediate poses between
the initial and desired poses. In addition, the method ensures
that the camera path in the Cartesian space is the closest
to the straight line path with visibility constraints being
satisfied which in fact is the shortest possible camera path
with all image features being visible. The main advantage is
the global stability of the path in addition to the flexibility
of introducing different kinds of constraints like feature
visibility and mechanical constraints to the servoing process
by simply adding a new set of constraints to the optimization
formulation.

Path planning methods [7], [8], [9] for visual servoing
are based on the principle that takes advantage of the local
properties like stability and robustness of the basic methods,
mainly the Image Based Visual Servoing (IBVS) method. A
proper image trajectory is planned in the image space to be
followed by IBVS. The desired image is varying with time
along the planned path to keep a small displacement between
the current and desired features. In fact, there are many works
in the literature that take care of the visibility of a single
image point [10], [9], [11]. If the camera is within a small
distance from the object, most of the features will go out of
the camera field of of view. However, the work presented in
in [12] keeps all features visibile in the camera field of view
during the servoing process without any knowledge about
the camera path.



Here, the visibility constraints are introduced as a linear
constraints to convex optimization problem. The objective
of the optimization problem is to find for each camera
position the nearest alternative one with minimum distance
to the original one that satisfies the visibility constraints. The
global stability is ensured by the effect of two factors. First,
the unconstrained path planning based on only attractive
potential field is a global path planning method. Second, the
optimization process ensures that the involved constraints are
satisfied by the alternative position. Results and performance
of the planner in image and Cartesian spaces are illustrated
using a simulation framework.

II. PRELIMINARIES AND BACKGROUND

We briefly introduce the fundamentals related to the imag-
ing process. More elaborate discussion is available at [13],
[14]. Then we summarize the background material related to
convex optimization. Details can be seen in [15].

A. Imaging Process

The imaging process using the perspective (Pin-hole)
model can be described as follows. Assume we have the
3D point M given by the non-homogeneous coordinates in
the camera frame

M =


 X

Y
Z


 . (1)

The perspective projection m̂ of the 3D point M onto the
normalized image plane can be written as[

x =
X

Z
, y =

Y

Z

]
⇐⇒ m̂ =

1
Z

(
I 0

) (
M
1

)
. (2)

Here, the vector m̂ = (x, y, 1)T gives the homogeneous
coordinates of the projection of the point M onto the
normalized image plane.

The normalized image coordinates (expressed in meter)
can be transformed to the physical image coordinates m =
(u, v, 1)T (expressed in pixels) using a suitable transforma-
tion. This transformation can be found by

m = Km̂, (3)

where

m =


 u

v
1


 and K =


 α −α cot θ u0

0 β
sin θ v0

0 0 1


 . (4)

The set of parameters {α, β, u0, v0, θ} are the camera
intrinsic parameters.

B. Convex Optimization Background

A set is convex if the line segment between every two
pair of points in the set is contained by the set [15].
Mathematically, if C is a convex set and x, y ∈ C, then
θx + (1 − θ)y ∈ C for 0 ≤ θ ≤ 1. A convex hull of a set is
the smallest convex set that contains the set and is composed
of all the convex combinations of the elements of the set. A
set C is a cone if ∀x ∈ C and θ ≥ 0, θx ∈ C. If the set also
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Fig. 1. The convexity of a function over a convex set in (a) and the convex
hull of a set in (b).

happens to be convex then it will be a convex cone satisfying
θ1x + θ2y ∈ C ∀x, y ∈ C and θ1, θ2 ≥ 0.

A function f : Rn → R is a convex function if its domain,
domf is convex and ∀x, y ∈ domf and 0 ≤ θ ≤ 1

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) (5)

The above equation geometrically means that the region
bounded by the line segment between (x, f(x)) and (y, f(y))
and the curve f lies above the curve. The functions include
all linear functions and a few non-linear functions.

An optimization problem is convex if it is of the form

minx f0(x) (6)

s.t. ,

fi(x) <= bi,∀i = 1, 2, ...,m (7)

where x ∈ Rn,

fi : Rn → R are all convex functions

and bi ∈ Rn ∀i = 0, 1, ...,m

Convex functions most importantly do not have the pitfall
of local minima assuring that the achieved solution always
happens to be optimal. They have efficient algorithms for
optimization like sub-gradient methods, interior-point meth-
ods and others. A wide variety of problems can be rewritten
as convex optimization problems by simple manipulations.

For example, Linear Programming (LP) problems are the
simplest form of convex optimization problems for which
both the objective function as well as the constraints are
linear. In this case the objective function being linear is
convex and so are the constraints and hence if a minima
is achieved it has to be the global minima. There can exist
at most one local minima except in the case of a constant
functions where every point is a minima.

A Second Order Cone Programming (SOCP) problem is
also a convex optimization problem with a linear objective
function minimized over a set of affine and quadratic con-
straints.

minx fT x

s.t. ,∥∥Aix − bi

∥∥ <= cT
i x + di, fori = 1, 2, ...,m

where, x, ci ∈ Rn, Ai ∈ Rni×n,

bi ∈ Rniand di ∈ R and f ∈ Rn.



Fig. 2. 3D configuration of the planning process.

LP is a special case of SOCP. A detailed study of SOCP
problems is available at [16].

Quadratic Programming (QP) problems are the problems
where the objective functions are of the form f(x) =
1
2x

′
Ax + b

′
x with inequality and equality constraints as

Cx � d and Ex = f . The case where A is positive
semidefinite makes the objective function convex. If the
the constraints also happen to be quadratic along with the
objective function but all convex then the problem is called
(convex) Quadratically Constrained Quadratic Programming
(convex QCQP) problem. These problems can be reformu-
lated to be solved as SOCP problems.

III. PATH PLANNING FORMULATION FOR
VISUAL SERVOING

Visual servoing can be solved as path planning problem.
Our goal is to plan a path closest to the straight line path
from a given initial position to the destination position while
satisfying certain constraints like keeping the features visible
all along the traversal.

Let us have an object formed by a set of N 3D points,
denoted by Mo, defined in the object frame Fo. The camera
frame in the initial, current, and desired frames is denoted
by F0, Fi, F∗ respectively. The transformation ∗Ti is defined
by the rotation ∗Ri and translation ∗ti between the current
camera frame Fi and the desired frame F∗. The transforma-
tion ∗Ti is represented by the 6×1 vector Pi = [∗ti, (uθ)i]

T ,
where ui is the axis and θi is the angle of the rotation ∗Ri.
We thus have P∗ = 01×6.

Our aim is to construct a path

L = {Pi | i = 1, · · · , C} . (8)

In fact, this path consists of C camera configurations starting
from the initial one P0 and ending with the desired one P∗
passing through the intermediate configurations Pi.

A. The Trajectory in the Image Space

The next step is to compute the trajectory in the image
space. The desired image trajectory is the projections mi
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Fig. 3. The unconstrained path. The camera trajectory in (a), and the image
trajectory in (b)

of the 3D points Mo in the object frame to the image.
Indeed, the trajectory in the image space is defined as
S = {sn

i | n = 1, · · · , N}. Here, si is the feature vector of
the image point coordinates, which is given as

si =
[
m1

i , · · · ,mN
i

]T
.

The projection to the image space is done using a perspective
camera model with projection matrix K as follows

mm
i = K iTo M i

o,

where the transformation iTo is defined by the rotation iRo

and translation ∗to between the object frame Fo and the
current camera one Fi.

B. Unconstrained Global Planner

If there are no constraints like collision avoidance or
visibility of features to be considered the path is an uncon-
strained path. Unconstrained path planning problem can be
efficiently solved based on the potential field method [8],
[17]. The planner works by considering that the robot motion
is under influence of an artificial attractive field V pulling
the robot end-effeector or the camera towards the target pose
P∗. Consider the artificial force F (P) which is induced by
the potential field V and is defined as

F (P) = −
(

∂V

∂P
)T

Pi

. (9)

The incremental equation of the discrete-time planner is

Pi = Pi−1 + γi−1
F (Pi−1)

‖F (Pi−1)‖ . (10)

By selecting the artificial field as a parabolic function [8] as

V (Pi) =
1
2
‖ Pi ‖2,

we have only one minima which is the global minima. Thus,
we can write (10) as

Pi = Pi−1 − γi−1
Pi−1

‖Pi−1‖ . (11)

Here, γ is a constant scalar that determines the step size of
the path segment.

As shown in Fig. 3.(a), the resulting path is a straight
line trajectory in the Cartesian space. However, the image
features may go out of the camera field of view as shown



in Fig. 3.(b). Additional processing is needed to modify the
path in such a way that make all the features are visible with
a minimum deviation from the straight line path.

In Section IV, we show how second order cone pro-
gramming can be used to compute the new camera position
which satisfies the feature visibility constraints with mini-
mum distance to the original camera position. Thus, SOCP
program is introduced in the planning process. For every
intermediate path segment Ci and pose Pi in which the
visibility constraints are violated, the SOCP program will be
activated to compute a new path segment Ĉi and pose P̂i.
The new camera position satisfies the visibility constraints
while keeping ‖ Ci − Ĉi ‖ minimum.

The object model is given in the form of 3D coordinates
as Mo expressed in the object frame Fo. The given model of
the object is used here to compute the relative object-camera
pose. Given the initial and desired images, the object pose
in the initial camera frame is 0To and desired one is ∗To.
The relative pose between the initial and desired cameras is
computed as ∗T0 = ∗To (0To)−1 = [∗R0

∗t0] . Since the
initial pose P0 = [∗t0, (uθ)0]

T and the desired one P∗ =
01×6 are now available, the complete unconstrained path L =
{Pi | i = 1, · · · , C} can be computed using the incremental
pose update criterion (11). Each new computed path segment
that violates the visibility constraints will be modified using
the SOCP program and the optimization problem presented
in (12-16). We need to compute the image coordinates that
are involved in the SOCP program.

The 3D coordinates of the point Mo are transformed
to the initial camera frame F0 using the transformation
0To =

[
0Ro

0to

]
. It is not needed for the SOCP program to

explicitly compute the image coordinates since the visibility
constraints are developed in terms of the translation 0to and
the 3D coordinates in frame F0 directly. However, the image
coordinates may be used in the design of the control law.

IV. FEATURE VISIBILITY BY SOCP TECHNIQUES

A. Problem Formulation

Let P0 = [t0, uθ0]T , be the initial pose defining the
relative displacement between the initial and desired views.
The visibility constraints of all image points are to be
satisfied at both the initial and final positions. Say, the current
pose is Pi = [∗ti, (uθ)i]

T at which some of the visibility
constraints are not satisfied, then alternative pose is computed
in such a way that all constraints are satisfied. The basic idea
of the computation of the alternative pose is based on the
following assumption:

Given a set of 3D points Mk and a camera pose Pi =
[∗ti, (uθ)i]

T with respect to a reference frame F0 and some
points M ∈ Mk are out of the camera field of view, there is
alternative camera pose P̂i with the same rotation(uθ)i and
different translation t̂ that satisfy all visibility constraints.

As illustrated in Fig. 4, the problem of finding the alter-
native translation t̂ with minimum distance to the old one is

Fig. 4. Camera cones that keep the features visible.

formulated as the following minimization problem

mint

∥∥t − t̂
∥∥2

(12)

s.t. ,

pi(t) >= m0 (13)

qi(t) >= n0 (14)

−pi(t) + (m − m0) >= 0 (15)

−qi(t) + (n − n0) >= 0 (16)

∀i = 1, 2, . . . , N

where, [pi(t) qi(t)] are the image points corresponding to the
feature points [Xi Yi Zi] when the translation vector of the
camera position is t and the resolution of the image is m×n
and the m0, n0 are margins from the corresponding image
boundaries, see Fig. 5. This problem is a convex quadratic
problem. In fact, the quadratic problem is a special case
of the second order cone optimization problem. Thus, this
problem can be solved efficiently using SOCP techniques.

The sketch in Fig. 4 explains the process. All the feature
points can be seen from the camera pose P0 but when the
camera moves to its current pose Pi some of the points on
the object move out of camera’s field of view. Hence the
translation t are corrected to t̂ to get the alternative camera
pose from which all the feature points are visible.

B. Convexity of the Formulation

Evidently, with a quadratic objective function to be op-
timized subject to a set of linear constraints, the above
formulation is a Quadratic Programming (QP) problem and
belongs to the class of QCQP.

Consider a camera cone, CO, with its apex at the point O
and a 3D feature point, M ∈ M0, the feature set. The set of
all points from which the point M is always visible can be
defined as,

C ′
M =

{
O

∣∣M ∈ CO

}
. (17)



Fig. 5. Borders of the viability region in the image.

In other words, it is the set of all points that the apex O of
the camera can trace with the same fixed rotation value such
that the point M always belongs to the cone CO. This set
of points is nothing but the set of all possible translations of
the camera for any given fixed rotation from which the point
M is always visible.

Figure 6(a) shows the camera cone, CO, at two different
positions of O1 and O2 with the 3D point, M being visible
from both the positions. Figure 6(b) shows the set C ′

M

corresponding to the rotational angles of camera cone CM

(CO, O = M). The set C ′
M can be made by reversing the

directions of the rays on the boundary of the cone CM .
The camera cone, CO has to be a convex cone since the

view frustums are always convex. Since the cone, C ′
M is

generated by flipping the direction of the rays of CO about
the point M , C ′

M is also convex. CO and C
′
M both satisfy

the definition of convex cone. The intersection of all such
convex cones, C ′

M for all M ∈ M0 is the feasibility region
J of the object M0. Since J is the intersection of convex
sets and intersection is convexity preserving, the feasibility
region, J is a convex set.

The objective function is the Euclidean distance between
the current position and the alternative position and satisfies
the inequality in (5). The constraints are all linear and also
satisfy the inequality.

Now that the objective function and the constraints in the
above formulation satisfy inequality (5) and their domains
are convex sets, the formulation is a (convex) QCQP. This
can be rewritten and solved as an SOCP as mentioned in the
earlier section. Hence the formulation is an SOCP.

One may note that the formulation presented in this paper
ensures that all the feature points lie inside the field of view
of the camera for the alternative position computed. In fact,
it is the convex hull of the points of the set M0 that lies in
the field of view. Hence, for an object to be always visible
completely the convex hull of M0 should completely enclose
the object.

V. RESULTS AND EVALUATION

The proposed method for path planning algorithm using
convex optimization techniques is evaluated using simulation

(a) (b)

Fig. 6. The camera cones at two different points O1 and the O2 in (a).
The camera cone at 3D point M and the corresponding feasability region
for fixed rotation parameters in (b).

TABLE I

THE INITIAL AND DESIRED CAMERA POSE, AND OBJECT FRAME POSE

WITH RESPECT TO THE WORLD REFERENCE FRAME.

Tx Ty Tz Rx Ry Rz

Initial pose 0.0 -1.5 0.0 0.0 0.0 -1.5708
Desired pose 2.1521 -2.0901 0.0 0.8 -0.6 -1.5708
Object pose 2.1521 -2.0901 0.0 0.8 -0.6 -1.5708

framework. We consider a set of points
{
Mk

}
k=1,...,4

that
belong to a non-planar object. The pixel coordinates of these
points expressed in the object frame are

Mo =




k 1 2 3 4
X 0.25 −0.25 −0.25 −0.2
Y 0.25 0.25 −0.25 −0.2
Z 0 0 0 0.1


 .

The object frame, initial and desired camera homogeneous
transformations with respect to a world reference frame; and
the object point coordinates are given in Tables I.

The camera parameter matrix is considered to be given as

K =


 1000 0 256

0 1000 256
0 0 1


 .

The proposed method is implemented in the simula-
tion framework along with the unconstrained path planning
method, which is based on potential field as presented in
Sec. III-B. The potential field method uses only attrac-
tive field without introducing any mechanical or visibility
constraints. In our method the constraints are introduced
by the optimization process done using SeDuMi [18] and
YALMIP [19].

The camera trajectory in the Cartesian space is illustrated
in Fig 7(a) for both algorithms. The straight light camera path
from the initial camera position to the desired camera posi-
tion is performed by the potential field based algorithm. The
camera trajectory that is performed by convex optimization
based algorithm deviates from the straight line one during
an intermediate part of the path in order to keep the features
visible.
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Fig. 7. The camera path in Cartesian space in (a). The straight line path is before introducing the feature visibility constraints. The image trajectory
before in (b) introducing the feature visibility constraints, and after in (c).

Image trajectories corresponding to the straight line cam-
era path are presented in Fig. 7(b). One feature has got out
of the field of view. The desired positions of the features
are marked by “ + ”. Fig. 7(c) shows the image trajectory
corresponding to the camera path produced by our proposed
algorithm, which is based on convex optimization. Features
are successfully kept in the camera field of view. The straight
line part of the image trajectory parallel to the image border
corresponds to the curvature part of the camera path that
appears in Fig. 7(a). The image margin is set to 20 pixels
from the image border.

VI. CONCLUSIONS AND FUTURE WORKS

It has been shown in this paper that convex optimization
can be applied as an efficient tool for solving problems
in visual servoing. It has the advantage of providing a
globally optimal solution to the problem with the set of
constraints satisfied. The issue of shortest camera path along
with visibility constraints has been addressed in this paper.
Theoretical formulation and results of simulation justify the
efficiency of this tool. Future work will focus on generalizing
the cost function to include both the rotation and translation.
In such case it would be possible to add the visibility and
mechanical constraints to the optimization problem while
providing a control signal that guides the camera to its home.
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