
Optimizing Image and Camera Trajectories in Robot Vision Control
using On-line Boosting

A. H. Abdul Hafez 1, Enric Cervera 2, and C.V. Jawahar 1

Abstract— In this paper, we present a novel boosted robot
vision control algorithm. The method utilizes on-line boost-
ing to produce a strong vision-based robot control starting
from two weak algorithms. The notion of weak and strong
algorithms has been presented in the context of robot vision
control, in presence of uncertainty in the measurement process.
Appropriate probabilistic error functions are defined for the
weak algorithm to evaluate their suitability in the task. An
on-line boosting algorithm is employed to derive a final strong
algorithm starting from two weak algorithms. This strong one
has superior performance both in image and Cartesian spaces.
Experiments justify this claim.

I. INTRODUCTION

Servo vision is the widely used vision-based robot control
scheme, where control loop of the robot is closed using visual
information. Visual information can be either from the 2D
image space or from the 3D Cartesian pose space [1]. A typ-
ical control algorithm minimizes an error function between
the current position of the camera and the desired one [2].
Based on the objective function used in the minimization
process, we have 2D (image-based) and 3D (position-based)
vision control algorithms. Chaumette [1] has shown that each
of these two classes of algorithms has weak points (draw-
backs) or potential problems. Owing to the complementary
properties of the weak points in the two algorithms, hybrid
methods [3], [4] have been recently proposed to integrate the
advantages and discard the drawbacks.

Hybrid methods integrate the 2D and 3D information in
the feature space [3], [4]. Methods like [5], [6] integrate
the 2D and 3D information in the action space. Gans and
Hutchinson [6] presented a switching system between image-
based and position-based vision control algorithms, while
Hafez and Jawahar [5] present a smooth linear combination
of different methods. Another method of switching is pre-
sented by Chesi et al. [7]. It switches between elementary
camera motions, mainly rotation and translation extracted by
decomposing the homography matrix between the current
and desired views. Here, we utilize on-line boosting to
enhance the visual control from the two basic (image-based
and position-based) vision control algorithms. Each of these
weak algorithms performs well only over a subspace of
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the input domain. The final output is the boosted control
signal derived from the independent control algorithms. The
problem of deriving robot visual control reduces to that of
identification of a weighted sum of the output of these weak
algorithms using weights computed from the error function
defined for each of the independent weak algorithms.

We use boosting [8] for efficient positioning task in active
vision systems, and demonstrate on robot vision control
problem. A learning algorithm has been used to learn the
relationship between motions in the image space and the
Cartesian space. This relation is called the image Jacobean or
the interaction matrix [9], [10]. Another work uses an adap-
tive learning algorithm to minimize the control error [11].
Based on the analysis and results presented in this paper, we
argue that introducing boosting can significantly improve the
performance and enhance the range of applications of robot
vision control algorithms.

II. BOOSTING AND VISION CONTROL
ALGORITHM

Boosting is a general method for improving the per-
formance of a given multiple weak hypotheses. In other
words, boosting transforms a set of weak algorithms into a
strong one. We first introduce the notion of weak and strong
algorithms in the context of the robot vision control.

A. Weak and Strong Algorithms

1) Weak Algorithms:: Let the function y = f(x) that
maps Rn −→ Rm represents the algorithm that takes x as an
input and results the output vector y. A weak vision control
algorithm is defined here as follows: For a subset X ∈ Rn

of the function domain, error e is greater than an ε. Some
algorithms compute the error e using training data as in the
case of classifiers or could be computed using the actual and
desired output as in the case of control algorithms.

2) Strong Algorithms:: Given a set of N weak algorithms
yi = fi(x), a strong algorithm is defined as a linear
combination of the N weak algorithms yi = fi(x). This
can be written as

Y = F (x) =
N∑

i=1

αifi(x) =
N∑

i=1

αiyi. (1)

Let the function ei = pi(y, x) represents the undesirability
in the performance of the concerned weak algorithm. This
error is increased when the performance of the weak algo-
rithm yi = fi(x) is less satisfactory. Weight that determines
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Fig. 1. Feature trajectories in the image space in (a), and the camera
trajectory in the Cartesian space in (b) for the image-based visual servoing
algorithm. The desired positions of the image features are marked by +.

the contribution of the weak algorithm to the strong one is
defined as

αi =
1
2

ln(
1 − ei

ei
). (2)

We select this method of weight computation to add an
upper limit to the weight values. By normalizing the error
function in a certain way, the weights will have always
positive values. This helps in avoiding the local minima. In
other words, it is not allowed for (1) to be zero.

B. Robot Vision Control Schemes

1) Image-based Vision Control:: In image-based vision
control, the task function is defined with respect to the error
Ei(s) = s − s∗ in the image space, where s is the vector
of the current features position in the image and s∗ is the
vector of the desired one. The velocity screw using image-
based vision control is given as [12]

Vi = −λiJ
+
i Ei(s), (3)

where J+
i is the pseudo-inverse of the Jacobian matrix

Ji. It is easy to show that the feature trajectory in the
image space is a straight line [1]. From any initial state,
image points move along straight line toward its desired
positions in the image (see Fig.1.(a)). This is subject to
the availability of a good estimate of the depth and robust
image measurements [13]. However, the camera trajectory in
Cartesian space is unpredictable (see Fig. 1.(b)). Since the
complex Cartesian camera trajectory may cause the robot
arm to get out of its workspace, the performance of the
image-based vision control algorithms is evaluated by its
capability to keep the robot arm in its workspace.

2) Position-based Vision Control:: In position-based vi-
sion control, the camera velocity is defined as a function of
the error between the current and desired camera pose. This
error is the transformation TC∗

C represented as a (6×1) vector
Ep(s) = [tC∗

C , uθ]T . The velocity screw using position-based
vision control is given as [12]

Vp = −λpJ
−1
p Ep (4)

where Jp is the interaction matrix [14]. While position-based
vision control algorithms minimize the error function in the
Cartesian space, the camera trajectory is a straight line (see
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Fig. 2. Feature trajectories in the image space in (a), and the camera
trajectory in the Cartesian space in (b) for the position-based visual servoing
algorithm. The desired positions of the image features are marked by +.

Fig. 2.(b)). However, the trajectories of image points are not
predictable and may get out of the camera field of view as
illustrated in Fig. 2.(a).

A minimum number of image points are required to avoid
the singularity of the Jacobean matrix [1]. Computer vision
algorithms that are used in the control methods like pose
and homography estimation algorithms [15], [4] need a
minimum number of image point to be reserved. In fact, the
performance of position-based vision control algorithms is
evaluated by its capability to keep the visibility of the image
points in the camera field of view.

III. BOOSTED VISION-BASED ROBOT CONTROL

Boosted visual control algorithm considers 2D and 3D
algorithms as weak algorithms. A linear combination of
these two weak algorithms produce a strong algorithm with
satisfactory performance. Weights which are used in the
combination are computed based on error function associated
with each one of these weak algorithms.

A. General Error Functions in Visual Servoing Algorithms

In robot vision control algorithms, the error et = p(yt)
is a function of the observation or measurement yt at the
time moment t, while the input is an action ∆u in a given
environment m. This action ∆u is nothing but a change
added to the previous system state Pt−1. The distribution of
the current observation is called the belief π(yt) and given
as:

π(yt+1) = Pr(yt+1 | y0,∆u0, . . . , yt,∆ut, Pt,m). (5)

By introducing the static world assumption or what is known
as Markov assumption, equation (5) can be written as

π(yt+1) = Pr(yt+1 | ∆ut, Pt,m). (6)

This is interpreted as that the past is independent of the future
given knowledge about the current state.

Since the distribution of the weights does not need to keep
track of the previously seen examples, the error function et

can be written as

et =
∫
Y

Pr(p(yt) > ε | Pt,m)dyt. (7)



Here, Y is the uncertainty area of the observation yt.
The details of this error function is dependent on the

vision-based control algorithm. In image-based control al-
gorithm, the measurement of interest is the distance of one
arm-joint q to its threshold θq at the current time moment. In
Position-based control algorithm, the measurement of interest
is the distance d of one image point to the image border.

B. Error Function for Image-based Vision Control

The performance of image-based vision control is mea-
sured by the ability of the working point qi of the ith arm
joint to avoid the joint limits {qi

min, qi
max} of the robot arm.

The joints configuration q of a robot arm is acceptable when
∀i, qi ∈ [

qi
min + θi

q, q
i
max − θi

q

]
. Here, θi

q is a threshold
of the ith joint. The error in the performance of image-
based control algorithm can be measured as a function of
the distance of the working point qi of the ith joint to its
concerned joint limit θi. Let the parameter {ri

t}Nq

i=1 be the
distance of the joint qi to its threshold θi

q at time moment t,
where

ri = min{qi − qi
min − θi

q, q
i
max − θi

q − qi} (8)

and Nq is the number of the joints of the arm.
Considering the uncertainty in the joint measurements,

it can be represented using the normal distribution
N (rt;µr, σr), where the mean µr = ri is the measurement
of the ith joint.

[a, b] = [µr − nσr, µr + nσr] . (9)

Considering the error function given in (7), we can write

eq
t =

∫ b

a

1√
2π(σq + σr)

exp
[
− a2

2σ2
q

− (rt − a)2

2σ2
r

]
drt,

=
1√

2π(σq + σr)
exp

[
− a2

2σ2
q

] [
erf(

rt − a

2σ2
r

√
2
)
]b

a

. (10)

Here, σq is selected in such that only working points within
a minimum distance to its joint limits will contribute to the
error function. By using n = 3 in (9) and substituting in
(10), we get the following error function for each ith joint.

eq
t =

1√
2π(σq + σr)

exp
[
− (µr − 3σr)2

2σ2
q

]
erf(

3√
2
). (11)

Finally, the total error function of the image-based vision
control algorithm is given as

et(ibvs) =
Nq∑
q=1

eq
t . (12)

This is the error function of the performance of the weak
image-based vision control algorithm. A plot of the error
with respect to the distance to the joint limit is illustrated in
Fig. 3. Substituting in (2), we get the associated weight to
the image-based vision control algorithm.
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Fig. 3. The error function of the weak vision control algorithm. In position-
based the measurement is the distance yt = d of the nearest image point
to the image border, and in image-based is the distance of the nearest joint
value yt = r to its limit.

C. Error Function for Position-based Vision Control

The performance of position-based vision control is mea-
sured by the ability of keeping the point features (ui, vi)
visible in the camera field of view. The error in the perfor-
mance of position-based vision control can be measured as a
function of the distance of the ith point to the nearest image
border or a threshold θI of the border. Let the parameter
{di

t}Nd
i=1 be the distance of the ith point to the nearest image

border at time t, where

di = min{ui−umin, vi−vmin, umax−ui, vmax−vi}, (13)

and Nd is the number of image points.
Considering the uncertainty in the image measurements,

this distance can be represented by the normal distribution
N (dt;µd, σd), where µd = di the measurement of the ith
image point . If we consider the same uncertainty range in
(9) and similar development in (10), we can write the error
function of the position-based vision control algorithm with
respect to one image point as

ei
t =

1√
2π(σi + σd)

exp
[
− (µd − 3σd)2

2σ2
i

]
erf(

3√
2
). (14)

Here, σi is selected in such that only image points within a
minimum distance to the image border will contribute to the
error function. Finally, the total error function of position-
based algorithm is given as

et(pbvs) =
Nd∑
i=1

ei
t. (15)

This is the error function of the performance of the weak
position-based vision control algorithm. A plot of the error
with respect to the distance to the image border is illustrated
in Fig. 3. Substituting in (2), we get the associated weight
to the position-based algorithm.

D. The Overall Boosting-based Algorithm

The objective is to position a robot arm with respect to
a set of features or with respect to an object that contains
a set of features. Equations (3) and (4) present two weak
vision control algorithms, image-based vision control and
position-based vision control algorithms, that can be used



Fig. 4. External view of the experimental setup.

to perform the said positioning task. The former has an
undesired behavior in the Cartesian space while the later has
an undesired behavior in the image space. On-line boosting
produces a strong vision-based algorithm using the error
functions defined in correspondence to each algorithm.

The general structure of the algorithm was explained in
Sec II. For the specific image-based vision control and
position-based vision control algorithms, the error functions
explained in Sections III-B and III-C and given by (12)
and (15) are evaluated and used to compute the correspond-
ing weights αi that gives the current importance to each
algorithm. It was shown in [5] that a linear combination of
two linear dynamic systems, as the system given in (1), is
asymptotically locally stable. Details of the on-line boosted
vision-based control algorithm are summarize in the follow-
ing steps:

1) Collect the image measurements Xt where
X = {xm : m ∈ {1, . . . , M}}, and compute the
pose Pt at time t.

2) Compute the outputs of the weak vision-based control
algorithms Vj = fj(X), as in (3) and (4). Here,
j ∈ {IBV S, PBV S}.

3) Compute the error function for IBVS weak algorithm
et(ibvs) =

∑Nq

i=1 ei
t, where ei

t is computed as in (11).
4) Compute the error function for PBVS weak algorithm

et(pbvs) =
∑Nd

i=1 ei
t, where ei

t is computed as in (14).
5) Compute the weights αj = 1

2 ln(1−ej

ej
), where

j ∈ {IBV S, PBV S}.
6) Normalize the weights αj to ᾱj to make them sum up

to one.
7) Compute the output of the strong algorithm given

in (1) as the linear combination of the weak algorithms
outputs using the computed weights as follows V =
F (x) =

∑
j∈{IBV S,PBV S} ᾱjVj(X).

IV. RESULTS

Our experimental setup consists of a Mitsubishi PA-10
robot arm, with a Point Grey Flea camera mounted on the
end-effector. The camera delivers 60 fps at VGA resolution,
and it is connected through a Firewire port to the computer
which controls the arm. Camera intrinsic parameters are
coarsely calibrated. Though the arm has 7 DOF, only 6 of
them are controlled via Cartesian velocity commands in the
end-effector frame.

The target used in our experiments is made of 4 white
points in a 15 cm square, which is tracked with the ViSP

(a) (b)

Fig. 6. The initial (a) and desired (b) images of the first task: 90 degrees
rotation about optical camera axis. The object frames are drown in red color.
The camera optical axis is perpendicular to object plan and not visible in
the image.
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Fig. 7. The end-effector trajectories. Image-based in red color, position-
based in green color, and boosting-based in blue color.

software [16]. Both 2D and 3D visual servoing tasks are
defined, and the proportional control gain is set to 0.2. In
the boosting algorithm, we set a threshold θI = 25.0 pixels
to the image border. Similar threshold θq = 30◦ is used for
the joint parameters. The values of the parameters σi and σq

are set to 50 pixels and 60 degrees respectively.
The most of robot vision algorithms work well for those

task that involved simple motion. They have been developed
in responce to specific task but they fail to perform some
another specific challenging tasks. Some of these challenging
tasks are stated in [17]. We carried out the experiments for
two of these challenging tasks. The first task is rotation of
90◦ about the camera axis. The second one is rotation of
180◦ about the same axis.

(b)

Fig. 8. The object target as seen by arm in the middle of the task using
position-based method. The feature has partially got out of the field of view.



Fig. 5. Sequence of images show the image feature trajectories for position-based (top) and boosting-based (down) algorithm. The task is a 90◦ about
the camera optical axis. One can not the that one point has partially got out of the field of view
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Fig. 9. The error functions of image-based and position-based weak
algorithms in (a), the corresponding weights in (b), of the boosting-based
vision control algorithm. The task is a 90◦ about the camera optical axis.

A. Rotation of 90◦ about the Camera Optical Axis

This visual task consists of a 90◦ rotation around the
camera optical axis. See Fig. 6.(a and b). Such task is
troublesome for the classical image-based and position-based
methods. In position-based method, the image features can
get out of the camera field of view easily, while using 2D
image-based method the camera retreats backward along the
camera Z axis trying to perform a non-realizable motion
by robot arm. Image trajectories using image-based vision
control are shown in Fig. 10.(a). The straight line trajectories
cause the camera to retreat backward along its Z axis, as
shown in Fig. 7 and Fig. 10.(b).

In the second case, that is position-based, the camera
trajectory is pure rotation about its optical axis. Thus, the
image points describe a 90◦ arcs around the principal point
of the image. Unfortunately, these arcs may get out of the
camera field of view. The image trajectory and the screw
velocity of this case are shown in Fig. 10.(c,d), while the
trajectory of the end-effector is shown in Fig.7.

In Fig. 8, there is an image of the target object in the
middle of the task using 3D position-based algorithm. One
feature gets partially out of the camera field of view. The
tracking keeps going on, but the centriod of the circle rep-
resenting the feature moves away from its correct position.

Then the model of the square is wrongly fitted. Indeed, the
3D pose is wrong. According to the red color frame, the
camera is normal to the surface, thus the Z axis should
go inside the image, but it departs quite significantly. That
explains the strange motion of the camera frame in the
middle of the task using 3D or position-based algorihtm in
Figs. 10.(d) and 7.

The boosting method combines both schemes, and it
seamlessly achieves the task while keeping the visual features
in the field of view, see Fig. 10.(e,f), the performance in the
image is similar to the performance of the case of using
2D algorithm. The end-effector is moving smoothly to the
goal location, see Fig. 7. The shown end-effector trajectory
is satisfactory and keeping the arm in its workspace. Fig. 9
shows the error functions of each of the image-based and
position-based algorithms as a boosted weak algorithms and
the corresponding weights in Fig. 9.(b).

Fig. 5 shows two image sequences. The top one is for
the position-based (3D) algorithm. One of the feautres has
partially got out of the field of view. The sequence at the
bottom is using the boosting algorithm. The features have
been successfully kept in the field of view.

B. Rotation of 180◦ about the Camera Optical Axis

This task is more troublesome for the classical image-
based and position-based methods. In image-based, since the
rotation is 180◦, the camera retreats back to infinity. The
robot arm obviously gets out its work space. As illustrated
in Fig. 11.(a,b), the process stop after around 200 iterations.
In position-based, one feature, that is near to the image
border, gets out of the camera field of view. The process
stop after approximatly 80 iterations as it illustrated in
Fig. 11.(c,d). As it is shoown in Fig. 11.(e,f), the process
completed successfully using the boosting-based control law.
The performance in the image is queit improved since the
image points can avoid the image border. In addition, The
algorithm keeps the camera retreat as less as possible.

V. CONCLUSIONS

The on-line boosting algorithm has been used to improve
the performance of each of image-based vision control and
position-based vison control in the image and Cartesian
spaces. It is shown that boosting algorithms can be general-
ized to much more than classifications and recognition like
vision control application. Experiments has been curried out
and showed a significant improvement to the performance of
the classical vision-based control algorithms.
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Fig. 10. The features’ trajectories in the image space in (a,c,e) and the
screw velocity in (b,d,f) of the image-based, position-based, and boosting-
based vision control algorithms respectively. The task is a 90◦ about the
camera optical axis.
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Fig. 11. The features’ trajectories in the image space in (a,c,e) and the
screw velocity in (b,d,f) of the image-based, position-based, and boosting-
based vision control algorithms respectively. The task is a 180◦ about the
camera optical axis.
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