
Streaming Terrain Rendering

Soumyajit Deb∗

Microsoft Research
P.J. Narayanan†

CVIT, IIIT Hyderabad
Shiben Bhattacharjee‡

CVIT, IIIT Hyderabad

Abstract
Terrains and other geometric models have been traditionally stored
locally. Their remote access presents the characteristicsthat are a
combination of data serving such as files and real-time streaming
like audio-visual media. In this sketch we describe a client-server
system to serve and stream large terrains to heterogenous clients.
This process is sensitive to both the client’s capabilitiesas well as
the available network bandwidth. Level of Detail and view predic-
tion are used to alleviate the effects of changing latency and band-
width. We discuss the design of a terrain streaming system and
present preliminary results.

Keywords: Terrain Rendering, Virtual Environments, Collabora-
tive Environments

1 Introduction
Traditional graphics applications typically store geometry locally
on secondary storage. Geometry can also be stored remotely and
be streamed on the fly when required. Serving of geometry can be
beneficial and difficult if network bandwidth is low and latency un-
predictable. In situations when data can’t be replicated such as a
dynamic battlefield visualization system, streaming is theonly pos-
sible solution. With streaming, different users may read and update
different portions of the virtual environment while maintaining a
collaborative and consistent system. A similar situation is presented
in modern massively multiplayer games. As of now, these games
have generally static environments where the basic terraindoes not
undergo change. This sketch concentrates exclusively on streaming
terrain over client-server networks in such situations. Incremental
terrain rendering has been well studied lately. [Losasso and Hoppe
2004] try to apply the idea of mipmapping to terrains and usesan
image pyramid to represent the various levels of detail of the terrain.
[Lindstrom and Pascucci 2005] use view dependent refinementof
the terrain for out of core visualization. However there have not
been any attempts to explicitly address the networking issues such
as latency.

2 Design and Implementation
The basic objective of a geometry server is to provide each client
with data appropriate to it as quickly and efficiently as possible. The
server must allow the highest quality of rendered output possible
for the client and transmit geometry and assets that allow the client
to maintain acceptable frame rates. Changing latencies should not
cause the system to freeze or hang for long durations during the
walkthrough. A block diagram of our system is indicated in Fig 1.
The server module maintains state of each client and transmits an
optimized representation based on available bandwidth andclient
capabilities. It also maintains the state of dynamic objects The
client module handles interfacing with the server, visibility culling,
prefetching and efficient caching. The user program is responsi-
ble for the final rendering and user interaction. The system uses
visibility culling to reduce the amount of data that is needed to be
transmitted. Further, the client locally caches the transmitted data to
avoid retransmission when the viewer retraces the path. We utilize
the Least Potentially Visible[Deb and Narayanan 2006] caching and

∗e-mail: sdeb@microsoft.com
†e-mail:pjn@iiit.ac.in
‡e-mail:shiben@students.iiit.ac.in

Figure 1: Geometry Server Block Diagram

culling scheme. The system also uses clientside predictionfollowed
by prefetching of data to avoid issues with changing latencies.

We use a tile based terrain representation similar to [Losasso and
Hoppe 2004]. This allows us to select only the tiles in the viewing
frustum for transmission and also lets us use traditional image com-
pression mechanisms. The client cache maintains tiles of different
levels of detail. A lower level of detail tile is never transmitted to
the client. The highest level of detail tile to be transmitted is fixed
based upon the available client capabilities. For a low end client, we
need not transmit extremely large heightmaps. We only transmit the
residue between the different levels of detail to save bandwidth. An
image pyramid is constructed at the server and only lower levels of
the pyramid are transmitted to the client using PTC compression.
For a 150MB heightmap of the terrain, we end up transmitting less
than a megabyte of data for a 75 second walkthrough.

3 Conclusion
We presented a Terrain Streaming system which adapts to client
characteristics and network bandwidth. The system supports dy-
namic entities in the environment allowing the content developer
to create collaborative 3D virtual environments. The system uses
a combination of visibility culling, clientside caching, speculative
prefetching, motion prediction and deep compression to achieve
perfomance similar to local rendering. Streaming systems that
serve terrains are especially suitable for applications like Virtual
Earth which must transmit large amounts of terrain information.
Multiplayer games and flight simulators shall also benefit byutiliz-
ing streaming to incorporate new content.

References

DEB, S., AND NARAYANAN , P. 2006. Geometry servers and streaming.CVIT Tech-
nical Report.

L INDSTROM, P., AND PASCUCCI, V. 2005. Terrain simplification simplified: A gen-
eral framework for view-dependent out-of-core visualization. In IEEE Transactions
on Visualization and Computer Graphics.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain rendering using
nested regular grids. InACM Trans. Graph.


