Learning Segmentation of Documents with
Complex Scripts

K.S. Sesh Kumar, Anoop M. Namboodiri, and C.V. Jawahar

Centre for Visual Information Technology,
International Institute of Information Technology, Hyderabad, India.

Abstract. Most of the state-of-the-art segmentation algorithms are de-
signed to handle complex document layouts and backgrounds, while as-
suming a simple script structure such as in Roman script. They perform
poorly when used with Indian languages, where the components are not
strictly collinear. In this paper, we propose a document segmentation
algorithm that can handle the complexity of Indian scripts in large doc-
ument image collections. Segmentation is posed as a graph cut problem
that incorporates the apriori information from script structure in the ob-
jective function of the cut. We show that this information can be learned
automatically and be adapted within a collection of documents (a book)
and across collections to achieve accurate segmentation. We show the
results on Indian language documents in Telugu script. The approach is
also applicable to other languages with complex scripts such as Bangla,
Kannada, Malayalam, and Urdu.

1 Introduction

Document image understanding algorithms are expected to work with a docu-
ment, irrespective of its layout, script, font, color, etc. Segmentation aims to par-
tition a document image into various homogeneous regions such as text blocks,
image blocks, lines, words etc. [1]. Page segmentation algorithms can be broadly
classified into three categories: bottom-up [2, 3], top-down [4, 5], and hybrid [6]
algorithms. The classification is based on the order in which the regions in a
document are identified and labeled. The layout of the document is represented
by a hierarchy of regions: page, image or text blocks, lines, words, components,
and pizels. The traditional document segmentation algorithms give good results
on most documents with complex layouts but assume the script in the docu-
ment to be simple as in English. These algorithms fail to give good results on
the documents with complex scripts such as African, Persian and Indian scripts.

1.1 Challenges in Segmentation of Indian Language Documents

In the recent past, the number of document images available for Indian languages
has grown drastically with the establishment of Digital Library of India [7]. The
digital library documents originate from a variety of sources, and vary consider-
ably in their structure, script, font, size, quality, etc. Of these, the variations in
the structure of the script are the most taxing to any segmentation algorithm.

?“Umgevﬂ ﬁg’“o@‘”ﬂg
(28Domo | sxTH &

,,,'XX'%"V;?E,, J o o <o v o
Manmmmmtmﬁ— 3:\3{)3—)‘:0?’ a2 ng &guaﬁg Eﬁ"

oo N _J - PRI, [t

(a) (b)

Fig. 1. Complexities of Telugu Script: (a) spatial distribution of connected components,
(b) Non-uniform spacing between lines and components.

In this paper we deal with documents in Indian languages such as Telugu,
Tamil, Bangla, and Malayalam, which have similar script structure. The com-
plexity of these scripts lie in the spatial distribution of the connected compo-
nents. Unlike English, most characters in Indian scripts are made up of more than
one connected component. These connected components do not form meaningful
characters by themselves, but when grouped together, form different characters
in the alphabet. The components of a character can be classified into:

Main Component: It is either a vowel, a consonant or a truncated consonant.
The main components of characters within a line are nearly collinear.

Consonant Modifier: In the above scripts, a character could be composed of two
consonants, the main component and a consonant modifier or half consonant.
Spatially, the consonant modifier could be to the left, right or bottom of the
main component, and hence lie within a line, or below it.

Vowel Modifier: A character also can have a vowel modifier, which modifies the
consonant. When the vowel modifier does not touch the main component, it
forms separate component, which lies above the main component.

Figure 1(a) shows the spatial distribution of components in Telugu script.
Due to variations in spatial distribution of the components within a the line
structure is non-uniform. This is the primary reason for the failure of many
traditional segmentation algorithms. Due to the positional variation of a modifier
component, the task of assigning it to a line above it or below it is ambiguous.
Heuristics such as assigning a component to its nearest line might fail because
the distances between the components vary depending on the font style, font
size and typeset as shown in figure 1(b).

Variations in scanned books are also introduced due to the change in writing
style of certain character over time, which need to be taken into account while
segmenting a document. Most of the old books are typeset by human and not
machine and hence it is difficult to specify a consistent distance between the
components. We introduce a Spatial Language Model that encapsulates the local
variations in component distribution and use it to perform segmentation.

2 Document Segmentation using Graph cuts

Segmentation is the process of partitioning an image into regions with homoge-
neous properties. Ideally, pixels forming a semantically meaningful object should
be grouped together. Traditional image segmentation approaches usually group
pixels using low level cues such as brightness, color, texture, and motion. How-
ever, the end goal is to have segments that correspond to a particular object,
which is often measured using mid and high level cues such as symmetry of ob-
jects and object models. This warrants a framework, where both low level cues
and high level cues are integrated to segment an image. For document images,
this would mean the use of higher level structure of the document in determining
the grouping of connected components to form characters, words, and lines.

Segmentation can thus be posed as an optimization problem, where low level
cues are used to group the pixels into regions that represent an object, which can
be analyzed using high level cues. A variety of methods have been proposed that
pose segmentation as an optimization problem. Graph cuts is one of the methods
used to perform image segmentation. It promises a near optimal solution; i.e.,
a solution at a known distance from the global optimum. To apply graph cuts
to document images, a graph is built using either the pixels or the connected
components of the image as nodes, which are linked to its neighbors through
edges. During segmentation, a cut is defined on the graph, which labels the
pixels or components on either side of the cut as belonging to different segments.
Boykov et al. [8] proved that minimizing an energy function is equivalent to
minimizing the cost of cut on the graph.

Graph cuts form an effective combination of top-down and bottom-up ap-
proaches for the segmentation [9, 10] problem. They also provide a framework for
learning the shape priors [11] and use them to perform effective segmentation.
The traditional page segmentation algorithms do not provide the ability to learn
from or adapt to the nature of images, given a large collection of data. We pose
the page segmentation problem as an optimization problem, which minimizes
the energy calculated using graph cuts. This provides the ability to learn the
layout parameters in an incremental fashion.

We propose a segmentation algorithm that partitions a document with com-
plex scripts. We initially assume that the layout not very complex, contains only
text, and the document is skew corrected [12,13]. Later, we show how to extend
the algorithm to work with complex layouts also.

Each connected component forms a node that is linked to its k nearest neigh-
bors, where the nearest neighbors are calculated using the Euclidean distance
between the centers of their bounding boxes. The value of k is selected such that
each component is connected to all the components surrounding it spatially. For
Telugu, the value of k that yielded the best results was 8. Once the neighbors are
identified, a graph is constructed, and an initial estimate of the lines is obtained
using the horizontal projection profile. The initial cut ensures that a majority of
the components that belong to a particular line remain connected. Later we re-
place the projection profile based method with simple heuristics on components
to arrive at a robust initial segmentation of documents with complex layouts.

2.1 Energy Function

Our goal is to assign a line number (label) to every connected component within
a document. All the connected components that belong to a document (C) need
to be partitioned into mutually exclusive and collective exhaustive subsets, C;,
where ¢ denotes the line number. The goal is to find a labeling f that labels
each component ¢ € C a label f, € £, where £ denotes the label set (here the
line numbers). The labeling should be done in such a way that it is piecewise
smooth. In this framework, a labeling f is computed so as to minimize the total
energy:

E(f) = Esmooth(f) + Edata(f)ﬂ (1)

where Egmnooth gives the measure of the smoothness of the labeling, while Eg,+4
gives a measures of the consistency of labeling with the observed data.

Smoothness Term: If a component along with k nearest neighbors belong to
a single line, the labeling is considered extremely smooth and the contribution
due to the component to the Egpo0tn term decreases.

Esmooth (f) = Z ‘/(c,c’)(ca C/), (2)

(e,e")eEN

where N denotes the set of neighboring connected components within a docu-
ment. We will require the term V. » to be a metric for the expansion algorithm
to give near optimal solution using the graph cut.

Data Term: The data term is one of the most important measure in the cal-
culating the energy of the segmentation algorithm. This term enables the im-
provement of the segmentation algorithm by using apriori information, which is
available in the form of spatial language models. This term gives a measure of
disagreement of labeling of a connected component to a line above it or to the
one below it.

Eaata(f) =Y D(f(e)) (3)

ceC

The calculation of D(f(c)) denotes the disagreement of the observed data and
the apriori information available. For instance if a particular type of connected
component, according to the apriori information available through the spatial
language model, belongs to the line above it in spite of being nearer to the line
below it, the Disagreement of labeling the connected component to the line above
it is less than the labeling of the connected component to the line below it. Thus
we attain better segmentation with the availability of good spatial language
models of the document. However, if the Fg,:, term is a constant function for
any assignment of labels to a connected component ¢, the graph cut is same as
a distance based heuristic, i.e., assign the connected component to the line that
it is nearest to.

2.2 Graph Construction

The problem of segmenting a text block into lines can be viewed as the grouping
of connected components into clusters. Each of the cluster of connected compo-
nents define a line. Hence, the first and the foremost step is to find the number
of clusters. The number of lines within a text block can be calculated using the
projection profile formed by the horizontal projection of foreground pixels. The
number of peaks within the profile gives the number of lines, n; into which the
text block is to be segmented.

Graph cuts need an initial labeling of the connected components. The text
block is first segmented into n; lines using the projection profile based approach.
There exist connected components that lie between two lines. All these com-
ponents are assigned to the lines that lie below it. Thus the text blocks are
segmented into lines, where there are chances that some of the component as-
signments could be wrong. However, an initial labeling of the components is
achieved through this process. Now the cost of graph cuts could be used to per-
form changes of labeling such that the cut is minimal and the energy calculated
using the labeling is minimized.

We start with the initial set of labels for all the connected components com-
puted from the projection-based cut. A graph is constructed using these initial
set of labels. We know all the components that belong to two consecutive lines.
A graph is constructed for every pair of consecutive lines with two extra nodes,
(«, B), representing the labels of the nodes. Every pair of nodes that represent
neighboring components (¢, ¢’) are linked by and edge, e(c,¢’) with the weight
Vie,eny(c,¢'), a metric in the label space (i.e. the distance defined between the
labels of the two components). It follows a Potts model defined by:

V(e f) = KT(a #) (4)

where T'(.) is 1 if its argument is true, and 0 otherwise.

Each of the components is also linked to one the two nodes, «, and 3, which
represent the labels of the lines. The weights of these edges, denoted by t& and
t8, are calculated using the following equation:

t2=Da)+ Y Vi fo) (5)

qE€EN;qPag

where D.(«) is the distance of the connected component to the nearest compo-
nent of the line with the label a, which is calculated using the spatial language
models. t7 is also calculated in a similar manner.

Now we have a graph that is constructed using the connected components
as nodes, along with two extra nodes with labels of the two lines. The a-3 swap
algorithm, proposed by Boykov et al. [8], is used to perform the graph cut. If the
cut separates the node representing the component ¢ with the node «, it given
the label «, which specifies the line it belongs to. The o — 8 swap algorithm tries
to swap the labels of the nodes in such a way that the energy calculated using
the configuration of the graph is minimum. This graph cut algorithm iteratively

swaps the labels in such a way that the local minima of the energy function
calculated using equation 1 attained for the particular labeling.

3 Spatial Language Models

A large number of document collections are available in the digital library of
India that belong to the different Indian languages. There is no ground truth
available for these documents. Most of the documents available are from a large
number of books that are scanned. The books with same script that are published
by a same publisher may have same font size, font style and similar typeset.
Hence the Spatial Language Models of all these books will be the same. There
could be Spatial Language Models that could be built for a book, a publisher,
etc.

Each component can be classified into one of the classes: main component,
vowel modifier and consonant modifier. The main component falls within a line,
the vowel modifier falls above a line, and the consonant falls below a line. Hence
a vowel modifier has higher affinity towards the line below it and a consonant
modifier has higher affinity to the line above it. The affinities can be changed
appropriately by changing the metric (distance between two components), such
that the a vowel modifier falls into a line below it and the consonant modifier
falls into a line above it even if they are farther from the line to which they
belong.

Fig. 2. Zones of a Connected Component.

The region surrounding a component is divided into 8 equi-angular regions
labeled in a clockwise direction as shown in the Figure 2. The affinities between
two components is represented by an nxnx8 matrix denoted by K, where n is the
number of classes of the component recognition system. The prior information is
fed into the system by initializing the matrix based on language information. As
noted before, the n classes have three types of components: the main components,
the vowel modifier and the consonant modifier. The affinities that belong to the
classes of the main components are initialized to 1. However if the components
are vowel modifiers, they have higher affinity to lines below it. Hence the zones
5,6,7 and 8 of the particular vowel modifier has lower values. If the component
is a consonant modifier, it has higher affinity to lines above it. Hence the zones
1,2,3 and 4 of the consonant modifier are initialized to lower values.

0.75 if ¢ is a vowel modifier and
j takes all values from 1 to n and k ranges from 5 to 8
Kfj = ¢ 0.75if 7 is a consonant modifier (6)
and j takes all values from 1 to n and k ranges from 1 to 4
1 remaining 7,5 and k

3.1 Distance based Graph

The connected components attained by connected component labeling are first
classified using a naive classifier. We define a metric to calculate the distance
between two components based on the affinity between them as follows.

wi; = KF; = djj, (7)

where d;; denotes the nearest distance between the components, ¢ denotes the
class the first component belongs to, j denotes the class the second component
belongs to and k denotes the zone of the first component through which the line
joining both the component passes through.

A graph is created with the components as the nodes the distance between
the components as the weight of the edge joining the components. The distance
between the components is calculated using the equation 7. The components
that belong to a line are within a particular distance threshold. Thus line seg-
mentation of the document image is performed.

3.2 Learning to Segment

The matrix K denotes affinity of a particular component to another component
in a particular direction. In a particular book a modifier component are generally
placed at a constant distance from a particular main component in the complete
book. When a component that belongs to a particular line is encountered, which
is still at a large distance from the main component, we reduce the distance
between the components by reducing the value of Kf ;- Here, i denotes the class
label of the main component, j denotes the class label of the modifier component,
and k is the zone of the main component, where the second component lies.

The segmentation of the documents can be learnt over time across documents.
The values of the matrix K are initialized as shown in Equation 6. A graph is
built using the components in the document image as shown in section 3.1.
The line segmentation is performed using graph cut proposed in section 2 and
the quality of segmentation is calculated using the segmentation quality metric
equation 8 proposed in [14].

_ 1 n 1
_1+O'1 1+ 09

where o1 denotes the variance of height of the lines, oo denotes the variance of
distance between the lines, BLD density of black/foreground pixels between two

Ji() — BLD + ILD, (8)

lines and ILD the density of black/foreground pixels within a line. J;(.) takes
values between {—1, 3}.

This gives an estimate of the performance of line segmentation. If the perfor-
mance is low i.e the value of J(.) calculated is less than 2 then we perform the
line segmentation . The segmentation is projection profile based, and has a tun-
able set of parameters. The best segmentation results are achieved by learning
the best set of values for the parameters using the segmentation quality metric
in equation 8.

The line segmentation algorithm detects line boundaries that gives the set of
edges in the graph that cross the line boundaries. The weights of all such edges
are increased by changing the values of Kflj and Kfi as shown in equation 9.
The weights of all the missing edges within a line are reduced by changing the
values of Kflj and Kle as shown in equation 10.

K\ =K/ +0.05; K" =K +0.05 (9)
ki _ gk . ks _ gk
K. =K} —0.10; K’ =K - 0.10, (10)

where i and j gives the class labels of the components, ki denotes the zone that
component j belongs to with respect to 4, and ko denotes the zone that the
component ¢ belongs to with respect to j. The weights of the graph are recalcu-
lated using the above equation and the lines segmentation is again performed as
suggested in section 3.1. The segmentation quality metric is then recalculated.
This is performed iteratively until the segmentation quality metric improves to
an acceptable value. This gives the learning phase of the document, where the
corrections made by a segmentation algorithm automatically is learnt and stored
in the form of the matrix K. The procedure to perform segmentation iteratively
on a document is give in Algorithm 1. To improve the performance across doc-
uments the K is retained for further documents.

Algorithm 1 Learning Spatial Language Models and Segmentation.

1: Initialize the Spatial Language Models K

2: while Change in K do

3: Find components with ambiguous Orientation(TOP/BOTTOM)

and initialize with arbitrary orientation

4: Calculate the distances between components using K
Create a graph and calculate the edges of the graph using the distances and
initial labels
6 Perform Graph Cut to give new labels to the components
7: if Errors in segmentation then
8: Correct them and update K
9

0

o

end if
: end while

4 Results and Discussions

There are large number of Indian language documents available at the Digital
Library of India. In this work, we used the documents that were scanned from
a Telugu book titled “Aadarsam”, which was printed in the year 1973 and con-
tains 256 pages. The goal is to learn the spatial language model of a particular
book from a few initial pages and use it to segment the remaining pages in the
book. There are two important steps involved in the process: i) adaptation of
segmentation to a single document, and ii) learning the spatial language model
from the sample documents.

Adaptation We take a sample page from the above mentioned book. This sam-
ple page is segmented without using any apriori information. This leads to poor
results of segmentation. When the segmentation is corrected either manually, or
using ground truth, or using another segmentation algorithm, the spatial lan-
guage models that belong to the particular page are updated. On segmenting
the same page with the updated spatial language models, it is observed that the
performance of the segmentation is improved. This is done iteratively to improve
the accuracy of the segmentation.

Figure 3 shows that the segmentation of the document improves over it-
erations because spatial language models are adapted to the document with
iterations. The components marked by the oval are the dangling components
that need to be assigned an appropriate line number. It can be observed that
all the similar looking components that were assigned a wrong line initially, are
assigned to the correct lines over iterations. The affinity of a component in a
particular direction is learnt during segmentation correction of the previous it-
erations. Figure 4(a) shows the improvement in performance of segmentation
on a particular document over iterations. The performance of segmentation is
calculated using the Equation 8. From Figure 4(b) it can also be observed that
the number of corrections that need to be made on the document decreases over
iterations.

Fig. 3. Segmentation of a single document after 1st, 24th and final iterations.

“Number-of-Cofrections-adaptation” ——

“Quality-of-Segmentation-adapiation”

Quality of Segmentation X()
Number of Segmentation Corrections

25 30 35 0 5 10

15 20 15 20
Number of Iterations Number of Iterations

(a) (b)

Fig. 4. (a):Performance of segmentation on a particular document over iterations, (b):
Number of corrections made after each segmentation.

Learning: We take all the pages of the book and perform segmentation on each
page iteratively adapting the spatial language models to the initial pages of the
book. After a few pages, there is no necessity to adapt the documents because the
spatial language models have completely learnt the characteristics of the book
and it can be used directly to perform segmentation on the remaining pages
of the book. Figure 5 shows that the algorithm can learn the spatial language
model of documents with different styles and give good results on segmentation.

Figure 6(a) shows that the performance of the segmentation eventually im-
proves on every page as information gathered from every page is used to perform
segmentation on later pages of the book. Figure 6(b) shows that the number of
segmentation corrections that need to be made on a new page is close to zero
after adapting to the first 44 pages of the book. The remaining 212 pages could
be segmented without any errors for the book under consideration.

Fig. 5. Segmentation results on three documents of different styles.

The algorithm can also handle text with arbitrarily complex layouts as long
as an initial estimate of lines can be found. We use the component classifier

“Number-of-Corrections-learning” —+—

“Qaliy-of-Segmentation-learning” ——

Quality of Segmentation ()
Number of Segmentation Corrections

200 250 0 50 200 250

100 150 100 150
Number of Pages Number of Pages

(a) (b)

Fig. 6. (a): Performance of the algorithm over the pages in the book, (b): Number of
segmentation corrections made for each document.

s ™ oy .
s, R I E~nd oo 3
@:)Aﬁsé)fg_edﬁ CEN ;»;PB “ﬁ“’_‘,
&Dérbgéwé?’ﬁ@fms Fé%m%@ iy
FE® A ;

2z 3 - S5 sE
2,“_*30& O =oF SS;,—v.pg.& &

2 o o=

oo, &

%S

Fig. 7. Segmentation results on a page with wavy layout.

to identify the main components and use it to find an initial assignment of
components to lines. Performance of segmentation on a wavy text can be seen
in Figure 7 and semi-circular text in Figure 8.

The algorithm is also fast in practice, since the graphs that are formed using
the k-nearest neighbor algorithm are sparse. However, if the graph is completely
connected, the time complexity can rise up to O(n?). To segment a document
with around 1200 components and 25 lines, the graph cuts takes an average time
of 0.268 seconds on a PC with 512 MB RAM and 3GHz single core processor.

5 Conclusions and Future Work

We have presented a graph cut based framework for segmentation of document
images that contain complex scripts such as in Indian languages. The framework
enables learning of the spatial distribution of the components of a specific script
and can adapt to a specific document collection, such as a book. Moreover, we are
able to use both corrections made by the user as well as any segmentation qual-
ity metric to improve the quality of the segmentation. We have demonstrated,
albeit on a limited set of examples, the ability of the framework to work with
complex scripts, where the traditional algorithms fail completely. Currently, we
are working on extending the algorithm to be able to learn a generic spatial
model from a varying collection of documents to so as to give a good initial

“aom HFDLwor, DY) SHogHos, Dbw Twom (288
o, TETO0S Sofoye HEr 85 soywe med

— ©
ToH SrHTSe %08, ESoer SHar Howr ST,

Fig. 8. Segmentation results on a page with semi-circular layout.

guess for a specific script. Moreover, the algorithm also needs to be extended to
other region types such as words, paragraphs, etc.

References

10.

11.

12.

13.

14.

. Performance Comparison of Six Algorithms for Page Segmentation. In: Proceedings

of the Seventh TAPR Workshop on Document Analysis Systems (LNCS 3872),
Nelson, New Zealand (2006)

O’Gorman, L.: The Document Spectrum for Page Layout Analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 15 (1993) 1162-1173

Kise, K., Sato, A., Iwata, M.: Segmentation of Page Images Using the Area Voronoi
Diagram. Computer Vision and Image Understanding 70 (1998) 370-382

Nagy, G., Seth, S., Viswanathan, M.: A Prototype Document Image Analysis
System for Technical Journals. Computer 25 (1992) 10-22

H.S.Baird, S.E.Jones, S.J.Fortune: Image segmentation by shape-directed covers.
In: Proceedings of International Conference on Pattern Recognition(ICPR). (1990)
820-825

T.Pavlidis, J.Zhou: Page Segmentation and Classification. Graphical Models and
Image Processing 54 (1992) 484-496

Digital Library of India: http://dli.iiit.ac.in/.

Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23 (2001) 1222-1239

. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence 22 (2000) 888-905

Shental, N., Zomet, A., Hertz, T., Weiss, Y.: Learning and inferring image seg-
mentations using the GBP typical cut algorithm. In: ICCV. (2003) 1243-1250
Kumar, M.P., Torr, P.H.S., Zisserman, A.: OBJ CUT. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, San Diego. (2005)
Baird, H.S.: The skew angle of printed documents. In: Document image analysis.
IEEE Computer Society Press, Los Alamitos, CA, USA (1995) 204-208

Yan, H.: Skew correction of document images using interline cross-correlation.
CVGIP: Graph. Models Image Process. 55 (1993) 538-543

Kumar, K.S.S., Namboodiri, A.M., Jawahar, C.V.: Learning to segment document
images. In: PReMI. (2005) 471-476

