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ABSTRACT

Unsupervised methods for automatic vessel segmentation from
retinal images are attractive when only small datasets, with
associated ground truth markings, are available. We present
an unsupervised, curvature-based method for segmenting the
complete vessel tree from colour retinal images. The vessels
are modeled as trenches and the medial lines of the trenches
are extracted using the curvature information derived from a
novel curvature estimate. The complete vessel structure is
then extracted using a modified region growing method. Test-
results of the algorithm using the DRIVE dataset are superior
to previously reported unsupervised methods and comparable
to those obtained with the supervised methods in [1],[2].

Index Terms— retina, curvature, vessel segmentation, un-
supervised, ridge.

1. INTRODUCTION

Automatic segmentation of the vessel tree from colour reti-
nal images has received much attention recently given its im-
portant role in image registration and in disease identification
such as in diabetic retinopathy and hypertension. Techniques
ranging from multi-level thresholding [3],[4] to model-based
have been proposed. In the latter, information about the ves-
sel morphology such as linearity, colouring, circular cross-
section, etc., are used to construct feature sets which are used
for either supervised classification or to devise filters for de-
tection. Examples of unsupervised techniques include those
based on matched filters [5],[6], morphological filters[7], and
graph cuts [8], whereas examples of supervised techniques
are ridge based [1] and wavelet based feature extraction [2].

Efforts to develop common datasets (with ground truth
markings) for benchmarking various segmentation techniques
are also slowly gaining pace [9],[4]. However, the size of
these datasets is still small (maximum of 40) compared to the
size of the datasets available for segmentation of non-medical
images which are larger. A reason for this is the sensitive na-
ture of the domain. Another factor is the need for involvement
of medical experts in generating the ground truth, at least as
guides, which may not be easy given other priorities for their
time. Given this scenario, supervised approaches to segmen-
tation result in reduction of the actual test set size as they
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require part of the available dataset to be used for training to
tune parameters. Overall, such approaches can make it dif-
ficult to fully assess and benchmark different techniques and
hinder the identification of robust techniques for deployment
in mass screening programmes. Hence, we believe there is
a critical need for taking an unsupervised approach to ves-
sel segmentation that can perform as well as supervised ap-
proaches. We present one such solution for vessel segmeta-
tion from colour retinal images in this paper which performs
well on a benchmark dataset.

2. PROPOSED ALGORITHM

When the green channel of a colour retinal image is visualised
as a surface in 3D space, blood vessels form topographical
trenches. Hence, the problem of blood vessel detection can
be formulated as an image analysis problem of trench detec-
tion. Most techniques in literature use such a formulation to
detect blood vessels, though the terminology commonly used
is ridges, rather than trenches, by ignoring the sign of the cur-
vature. These techniques are based on the fact that medial
lines of trenches are characterised by high magnitudes of cur-
vature along the direction perpendicular to the trench. Locat-
ing the medial lines of trenches generally requires detecting
the points of directional maxima of the maximum principle
curvature (MPC) [10] of the image surface. Calculation of
MPC requires estimation of the first and second directional
derivatives of the image function which is computationally
complex and expensive. We propose a vessel detection tech-
nique based on an alternative curvature measure proposed in
[11]. The first stage addresses the common problem of non-
uniform illumination in retinal images due to both the retinal
geometry and other imaging defects, while the second stage
detects vessels via trench detection using curvature measure-
ment. The output of this stage is in the form of a medial axes
map of the vessels. The entire vessel structure is extracted
next using a simple region growing technique. Each of these
stages are described in detail next.

2.1. Illumination Correction

We address the non-uniform illumination problem by modify-
ing a quotient based approach proposed for face images [12].
The non-uniform illumination in a given degraded retinal im-



age I , is modelled as a multiplicative degradation function L
applied to an original image Io. Assuming L to be a slowly
varying function, it can be estimated by smoothing the de-
graded image. If Is is the smoothed image then L can be
found as:

L(x, y) =
{

Is(x,y)
lo

if Is(x, y) < lo
1 if Is(x, y) ≥ lo.

where lo is the desired mean illumination level, which can be
chosen to be half the dynamic pixel range. Using the above
estimate of the degradation, the desired corrected image is
found as:

Io(x, y) =
{

I(x, y) × lo
Is(x,y) if Is(x, y) < lo

I(x, y) if Is(x, y) ≥ lo.

2.2. Trench detection

Trenches are regions characterized by high curvature, oriented
in a particular direction. The curvature at any point is a mea-
sure of the bend in the surface along a particular direction. In
order to determine this curvature at every point in the image,
we have chosen to use an alternative measure for curvature
of an image surface that has been proposed in [11]. This is
called the surface tangent derivative or the STD and its scope,
as established in [11], indicates that it can be used to detect a
wide range of trenches. We provide a brief summary of the
STD next.

Let y = f(x) be any 1D function and the tangent at a point
P on this function make an angle θ. The extrinsic curvature of
the function f(x) at this point is given as:

κ(x) =
dθ

dl
=

dθ
dx√

1 +
(

dy
dx

)2
=

d2y
dx2(

1 +
(
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)2
) 3
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The numerator of the third term in the above expression, dθ
dx ,

can be expanded as

Υ(x) =
dθ

dx
=

d

dx

[
tan−1

(
dy

dx

)]
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dx2
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(
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Comparing the above equations, we see that the two expres-
sions differ only in the power of the denominator. Υ(x) peaks
at the points (same as κ(x)) where first derivative of the im-
age function is zero and second derivative is a maximum. In
the case of 2D images, Υ(x) corresponds to a derivative of the
angle made by a surface tangent line with the image plane, in
some direction and hence is the STD of the image function.

Given a digital image, the STD at every point in the image
is obtained by finding the directional derivatives of its gradi-
ent direction in N directions. In practice, this is achieved in
the following steps: Given an image I(m, n) its gradient im-
age Gi(m, n) and the corresponding gradient angle θ i(m, n)

= tan−1(Gi) are computed for N directions; next, the STD
Υi(x) is computed from the directional derivatives of θ. The
medial points in the trenches are located by finding maximas
(magnitude) of Υi(x) along some orientation. An algorithm
for detecting these medial pixels is given below.

2.2.1. Trench detection algorithm

Let I(n, m) be the image function. Calculate the STD Υi(n, m)
for 4 directions with a mask of size M × M . Let t be the
threshold for trench strength. For every pixel location (n, m),
do the following:
1. Evaluate |Υmax| = max { |Υi| } and let the corresponding
orientation i = α
2. If |Υmax| > t then:
Check if |Υmax| > |Υi| of the neighboring pixels corre-
sponding to the direction α. If yes, then mark the pixel (n,m)
as a trench pixel. Else, do nothing.

The last test can be explained with an example. If α =
45o, then check if

|Υmax| > |Υi(n + 1, m + 1)| and
|Υmax| > |Υi(n − 1, m − 1)|

The choice of the threshold t controls which part of the
vessel tree is captured. For instance a high threshold will cap-
ture only the main branches which are relatively thick. As the
threshold value is lowered, a fuller tree is captured along with
many extraneous points which may not be part of the vessel
tree. In order to address this problem, we have devised a solu-
tion based on the observation that thinner vessels branch out
from thicker vessels. Thus, we initialise a trench map by set-
ting a high threshold that captures the thickest branches. We
reject isolated trench points in this map based on connectivity.
Next, we lower the threshold and add newly detected trench
pixels to the map based on their connectivity to those in the
initial map. This scheme is described formally below.

2.2.2. Vessel reconstruction

Let Λh and Λl be the set of trench pixels obtained at threshold
th and tl respectively such that th > tl. The reconstructed
vessel map Λr is obtained as follows:
1. Λr = Λh

2. For every pixel v ∈ Λl, Λr = Λr ∪ v, if v is 8-connected
to at least one pixel in Λr

3. Repeat step 2 until no further pixel is added to Λr

2.3. Segmentation

A modified region growing scheme is used to segment the
vessels. Since the region of interest is a vessel, domain knowl-
edge can be exploited to constrain the growth of the region.
Medial points detected by the trench detection algorithm serve
as seed points. The region is grown only around a selected



Fig. 1. (a) Input colour image (b) Detected medial lines (c) Segmentated vessels

Table 1. Performance comparison of different methods
Method Az MAA Dc Comment
Soares 0.952 - 0.137 Supervised
Staal 0.94 0.95 0.1358 Supervised

Our Method 0.9271 0.9361 0.1488 Unsupervised
Zana 0.875 0.94 0.2887 Unsupervised

Wenchao 0.85 - 0.1823 Unsupervised
Jiang 0.81 0.92 0.3268 Unsupervised

neighborhood of the seed point, whose size is determined
based on the width of the largest vessel present in the im-
age. The region is grown based on the connectivity of the
test pixel with the previously declared vessel pixels and its in-
tensity value. A final dilation step is applied to complete the
vessel tree segmentation.

3. EXPERIMENTS AND RESULTS

The above algorithm for vessel segmentation was tested on
the DRIVE dataset [9]. In our experiments, the desired mean
illumination was chosen to be 120 and the STD was compu-
tated in four different directions: 0o, 45o, 90o and 135o using
a mask size of 5 × 5. The threshold (th) value was cho-
sen empirically to provide the best results. The DRIVE
database contains 40 colour images divided into 20 training
and 20 test images. The downloaded images were of size
565 × 584. Even though, the proposed algorithm is unsu-
pervised, only the 20 test images were included in our testset
similar to [7],[8]and [3], in order to benchmark against the re-
ported methods. A test image with the detected medial lines
of trenches and the extracted vessel tree are shown in Fig-
ure 1. In the literature, several performance measures have
been reported for assessing vessel segmentation. These in-
clude area under the ROC (Az), maximum average accuracy
(MAA) and distance of ROC from the ideal point (0, 1) in the
ROC, denoted by Dc [13],[8]. The first measures the discrim-
inative power of an algorithm with perfect score being 1. The
MAA represents the proportion of the total number of cor-
rectly classified pixels (vessel and non-vessel) relative to the

Fig. 2. Clockwise from top left (a) Ground truth (b) Staal
results [1] (c) Zana results [7] (d) Our results

total number of pixels in the retinal region, which is a sub-
region bounded by a mask imposed by the imaging system.
The last measure, Dc, represents the ability of an algorithm
to maximise true positives without increasing the false pos-
itives in the detected results, with a lower value indicating
better performance. We have used all these measures to com-
pare our algorithm’s performance against methods that have
been reported in literature. A sample ground truth and seg-
mented results are shown in Figure 2 for our algorithm and
[1], [7] for comparison. These figures show that the vessel
trees are of good quality with both the thick and thin ves-
sels being successfuly extracted by our algorithm. Our al-
gorithm is sensitive enough to consistently pick out even the
finer vessels. Figure 3 shows the ROC for our algorithm along
with those of the previously reported methods. The ROCs
for the other methods have been duplicated from the respec-
tive papers for comparison. Table 1 shows a comparison of
the Az , MAA and Dc for the different supervised and unsu-
pervised segmentation algorithms. It can be seen from the



table that in general, supervised methods outperform unsu-
pervised methods and our algorithm’s performance is closer
to the existing supervised methods. Specifically, in terms of
discriminative power, our algorithm outperforms all other un-
supervised methods and is closer to the supervised methods,
while in terms of accuracy, the performance is comparable to
the best unsupervised method reported in literature. The ob-
tained result for Dc indicates that our novel curvature based
approach is able to increase true positive rate without increas-
ing the fasle positive rate unlike other unsupervised methods.

4. DISCUSSION AND CONCLUSION

Obtaining large datasets with ground truth is essential in de-
veloping robust solutions for vessel segmentation that can be
used in mass programmes. However, this is difficult to achieve
as the ground truth generation is a tedious process that de-
mands patience. In the course of our experiments, we dis-
covered that the ground truth markings in the DRIVE dataset
tended to be oversegmented at times, perhaps as a sign of the
above problem, in which case the vessel thickness obtained
prior to the last dilation step in our algorithm was found to be
closer to the true vessel thickness as detected by a Canny de-
tector. This signals the challenges in creating consistent qual-
ity and large size datasets for testing and benchmarking seg-
mentation algorithms. Unsupervised techniques for segmen-
tation, such as the one we have presented, are hence quite at-
tractive in this scenario. In registration applications, an added
strength of our method is it can be simplified by removing the
segmentation stage as the medial axis map provides sufficient
corner (control) points.

Fig. 3. Receiver Operator characteristics for different meth-
ods.
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