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Abstract— In this paper, we present a new integration method
for improving the performance of visual servoing. The method
integrates both image-based visual servoing (IBVS) and position-
based visual servoing (PBVS) to satisfy the requirements of the
visual servoing process. We define a probabilistic integration rule
for IBVS and PBVS controllers. Density functions that determine
the probability of each controller are defined to satisfy the above
constraints. We prove that this integration method provides
global stability, and avoids local minima. The new integration
method is validated on positioning tasks, and compared with
other switching methods.

I. INTRODUCTION

Visual servoing is a method in which visual feedback is
introduced in the robot control loop to increase the accuracy
of the overall robot system. This saves the need to increase
the accuracy of different parts like end-effector and sensors
attached to the system. In addition, visual feedback helps
in controlling the robot pose with respect to a target even
in the presence of calibration errors. Visual servoing has
become an attractive area of research and has recently received
considerable amount of attention [1], [2], [3].

Visual servoing techniques are divided into three classes.
These classes are: image-based, position-based, and hybrid vi-
sual servoing. These divisions are respectively based on the use
of 2D information from the image space, 3D information from
the Cartesian space, or a mixture of both kinds of information.
While image-based visual servoing and position-based visual
servoing have complementary advantages and disadvantages,
hybrid methods attempt to incorporate the advantages of both
methods.

Maintaining visibility of features, local minima avoidance,
preference for shortest path, and avoidance of image singular-
ity are some of the challenges faced in the field of visual
servoing [4], [5]. In this paper, we present a probabilistic
framework that integrates the classical architectures, IBVS
and PBVS into one architecture. The integration process uses
weights to determine the relative importance of each sub-
controller. These weights are computed through probability
density functions which are designed to satisfy the above
challenges.

II. RELATED WORK AND PROBLEM FORMULATION

Recent research in the visual servoing field has concentrated
on development of algorithms which satisfy one or more of the

requirements mentioned in Section I. The most comprehensive
solutions are based on potential fields [3], [6], [5], which
was originally introduced to the robotic community by Khatib
in [7] as a solution to the collision avoidance problem. Most
of the earlier works tried to address the visibility problem
without any attention toward the local minima and Cartesian
camera trajectory. The method presented in [5] solved the local
minima problem, but the camera path is neither straight line
nor smooth.

Mesouar and Chaumette [6] have recently proposed a po-
tential field based method for path planning in the image
space. This method introduces the visibility and robot joint
limits constraints into the design of the desired trajectories.
Essentially, this is a local path planning method where the
local minima is not ensured to be avoidable when repulsive and
attractive fields are equal. In addition, the camera trajectory is
not predictable when the repulsive forces are involved.

Gans and Hutchinson [8] have proposed a switching ap-
proach between IBVS and PBVS. The proposed controller
consists of two sub-controllers for IBVS and PBVS. Whenever
the features are going to get out of the field of view (FoV)
of the camera, the control switches to IBVS, and whenever
the camera starts retreat, the control switches back to PBVS.
However, the global stability is not ensured in this scheme.
The binary switching allows either IBVS or PBVS controller
to work at a specific instance. They did not consider the
potential local minima, which was demonstrated in [4], neither
in the image space nor in the Cartesian space. In addition, a
discontinuity in the velocity control signal can be observed
at the time of switching between the two sub-controllers. This
algorithm also needs more time to converge. The reason behind
this is that switching from IBVS to PBVS may increase the
image error, which is minimized using the IBVS controller.

In Chesi et. al. [9], a switching approach between elemen-
tary camera movements is proposed. A sequence of high level
if-then-else rules is used to switch between camera rotation,
translation, or backward translation along the camera optical
axis. This method, shows a discontinuity in the velocity control
signal in addition to longer time of convergence owing to the
switching time to keep features in the FoV. The Cartesian
local minima due to errors in homography estimation is not
considered. In addition, the camera trajectory is not straight



line any more because of the backward translation.
The method proposed in this paper is based on a probabilis-

tic integration scheme. It outperforms the reported methods
available in the literature. Experimental results validate our
claim.

III. PROBABILISTIC INTEGRATION FRAMEWORK

Let V = {Vi}, where V ⊆ R6 be a set of possible states
of the velocity screw vector commanded to the robot arm
controller. The probability that the velocity vector V uses the
value Vi conditioned to the image measurements vector x is

p(V = Vi|x) = p(Vi|x). (1)

By convention, these probabilities sum to unity
∫

V
p(Vi|x) = 1. The conditioned expected value of the

velocity vector over the universe V is

V̂ = E(Vi|x) =

∫

V

Vi p(Vi|x) dVi. (2)

Let us define another parameter αi of the visual servoing
process. Consider that we have N individual visual servoing
control laws represented by the parameters αi. For example, an
integration can be done between IBVS and PBVS control laws,
then i takes the values {im, po}. In case of using an integration
between rotation, translation, and backward translation control
laws from a given scheme, then i takes the values {ro, tr, ba}.

It is possible to rewrite the probability function p(Vi|x) as

p(Vi|x) =

∫

α

p(Vi, α|x) dα =

∫

α

p(Vi|α, x) p(α|x) dα. (3)

By substituting (3) in (2), the conditional mean of the velocity
can be rewritten after some developments as

V̂ =

∫

α

p(α|x) V̂ (α) dα, (4)

where, V̂ (α) =
∫

V
Vi p(Vi|α, x) dVi, and in the discrete case

V̂ =
∑

αi

V̂ (αi) p(αi|x), where
∑

αi

p(αi|x) = 1. (5)

Here p(αi|x) is the discrete probability for αi, conditioned on
the image measurement x. Equation (5) says that the optimal
estimate of the velocity vector is a weighted summation of the
velocity values computed from each individual control law.
This is shown in Fig (1). The problem is now reduced to the
computation of the velocity from each individual controller in
addition to the computation of the probabilities of using each
of these individual controllers.

IV. INTEGRATED IBVS AND PBVS

A. Image-based and Position-based Visual Servoing

In Image-based visual servoing, the task function is defined
with respect to the error e(s) = s − s∗ in the image space,
where s is the vector of the current features position and s∗ is
the vector of the desired one. The velocity screw using IBVS
is given as [1]

ėi = JiVi (6)

Fig. 1. Weighted sum of the velocity estimates

Vi = −λiJ
+
i ei(s), (7)

where J+
i is the pseudo-inverse of the Jacobian matrix Ji.

It is easy to show that the feature trajectory in the image
space is a straight line while the camera trajectory in the
Cartesian space is unpredictable. Indeed, from any initial state,
IBVS moves the image points straight toward its desired
positions in the image. This is subject to the availability of
a good estimate of the depth and robust image measurements.
IBVS is proved to be asymptotically locally stable, but the
global stability is not ensured since unpredictable image local
minima and Jacobian singularity may occurs at any time.

In position-based visual servoing, the camera velocity is
defined as a function of the error between the current and
desired camera pose. This error is the transformation T C∗

C

represented as a (6 × 1) vector ep = [tC∗
C , uθ]T .

The velocity screw using PBVS is given as [1]

ėp = JpVp (8)

Vp = −λpJ
−1
p ep (9)

where Jp is the interaction matrix [10].
While PBVS minimize the error function in the Cartesian

space, the camera trajectory is a straight line, but the feature
trajectory is not predictable and may get out of the camera
field of view. However, PBVS method is known to be globally
asymptotically stable and does not suffer from any local
minima or Jacobian singularity. The global stability is subject
to an accurate estimate of the pose.

B. The Integration Rule

Two individual image-based visual servoing and position-
based visual servoing control laws can be integrated using (5)

V̂ = V̂ (αim) p(αim|x) + V̂ (αpo) p(αpo|x). (10)

Here, V̂ (αim) is the velocity computed using the IBVS
controller given in (7). The velocity V̂ (αpo) is computed using
the PBVS controller given in (9). The probability of using
each individual control law p(αi|x), conditioned on the image
measurement x, is determined by the image and Cartesian
constraints to be satisfied during the process of visual servoing.
The probabilistic weights p(αim|x) and p(αpo|x) given in (10)
can be normalized in such a way that it sums upto one, to



satisfy (5). Replacing the normalized term p(αim|x)
p(αim|x)+p(αpo|x)

by ω and p(αpo|x)
p(αim|x)+p(αpo|x) by (1 − ω) gives

V̂ = ωV̂ (αim) + (1 − ω)V̂ (αpo), where 0 < ω < 1. (11)

The probability p(αpo|x) will be defined as

p(αpo|x) = ps(αpo|x)pl(αpo|x),

where the subscripts l and s indicate to local minima and
straight camera trajectory respectively. The fact that PBVS is
preferable to produce a straight camera trajectory whenever the
features visibility and local minima constraints are satisfied is
interpreted as ps(αpo|x) = 1.

To account for Cartesian local minima that may exist owing
to errors in pose estimation process, the probability p(αim|x)
should also increases near to it. In this way, the probability
p(αim|x) is divided to be the multiplication of two terms as
following

p(αim|x) = pv(αim|x)pl(αim|x),

where pv(αim|x) corresponds to the features visibility and
pl(αim|x) corresponds to the Cartesian local minima.

Note that this framework is a superior generic framework
of the switching methods proposed either in [8] or in [9].
The difference between the proposed and these two methods
is that ω ∈ {0, 1}, while αi ∈ {αim, αpo} in [8] and αi ∈
{αro, αtr, αba} in [9]. In our method, 0 < ω < 1.

C. Feature-visibility

If the initial and desired positions of the image points
are well chosen in such a way that all features are in the
camera field of view, the image points are ensured to be in
the FoV during the whole process. The probability of using
image-based visual servoing ω, conditioned on the image
measurement x, increases when one of the image points
approaches the image boundary more than a threshold D0.

Given N image points as features, let us define the vector
D where its element di is the distance vector of the ith
point to the nearest image boundary. The probability ω should
increase when dmin is decreasing, where dmin is given as
dmin = mindi

(D). ¿From the discussion above, the proba-
bility function pv(αim|x) can be formulated as the following
normal density function

pv(αim|x) = N (dmin;D0, σD), (12)

where σD is the variance and its value is selected depends on
the image size and the threshold D0.

D. Image and Cartesian Local Minima

The evaluation of Cartesian local minima is done in
terms of the energy function in the space of 3D pose error
Ep = 1

2eT
p ep, and its gradient vector Gp(t) with respect to

time t. At every time instant t, the gradient vector Gp(t) is
given as

Gp(t, s) =
∂Ep

∂t

∣

∣

∣

t,s
= (ep)

T ∂ep

∂t
= (ep)

T JpV̂ (αpo), (13)

where Jp is the pose Jacobian. Cartesian local minima occurs
when the value of the norm of the gradient vector Ĝp(t)
is going to be smaller than a threshold value G0p. Indeed,
the probability density function of Cartesian local minima is
formulated as following

pl(αim|x) = N (Ĝp(t);G0p, σGp), (14)

where Ĝp(t) is the norm of the vector Gp(t), and σGp =
Ep(0)

ρ

is the variance. Here, Ep(0) is the pose space energy function
at the initial stage t = 0, and ε is a positive scalar, its value
is selected to avoid nullifying p(αim|x) if there is no desired
image feature that is near to the image border.

The evaluation of image local minima is done in terms of

the energy function in the image space Ei =
1

2
eT
i ei, and

its gradient vector Gi(t) with respect to time t. At every time
instant t, the gradient vector Gi(t) is given as

Gi(t, s) =
∂Ei

∂t

∣

∣

∣

t,s
= (st − sd)

T ∂st

∂t
= (st − sd)

T JiV̂ , (15)

where Ji is the image Jacobian. Image local minima occurs
when the norm of the gradient vector Ĝi(t) is near the zero.
Therefor, the probability ω should decrease at or near to the
image local minima. Indeed, the probability density function
of image local minima is formulated as following

pl(αpo|x) = η N (Ĝi(t);G0i, σGi),+ µ (16)

where Ĝi(t) is the norm of the vector Gi(t), and σGi is
the variance. The constants η and µ are selected depends on
the state of the energy function Ei with respect to the global
minima at the desired state as following:

{

η = 1, µ = 0.387, if Ei > ρ;

η = 0, µ = 0.01, if Ei ≤ ρ.
(17)

Here, ρ defines a convergence neighborhood around the
desired feature position. Defining pl(αpo|x) in this form is
useful to distinguish between local and global image minima.
In other words, the definition of the previous probabilities
acts in such a way that p(αpo|x) increases only at the image
local minima while it vanishes to small value at the global
minima where IBVS is preferable.

V. STABILITY ANALYSIS

A. Local Stability

Local stability is considered only in a neighborhood of
the convergence (equilibrium) point. An equilibrium point
is locally asymptotically stable if all solutions starting in a
small neighborhood converge to the equilibrium point. stability
of equilibrium point is characterized by Lyapunov function.
Considering linear systems, the local and global stability are
same. The necessary and sufficient condition for local/global
asymptotic stability of a linear system ė = Ae is that the
matrix A describing the system has negative real parts for all
its eigenvalues. Usually, eigenvalues with zeros or real part
do not void the stability but contrarily not giving robustness



because it may shift to the positive part when the system is
affected by noise or disturbance. In fact, our system is a convex
combination of two linear systems; the matrices Ji and Jp are
fixed and non-singular in a neighborhood of the equilibrium
point. Stability for such a system needs to ensure that there
exist a Lyapunov function for this combination.

Substituting (7) and (9) in (11), we write

V̂ = − ωJ+
i ei − (1 − ω)J−1

p ep. (18)

Equations (6) and (8) can be concatenated and rewritten in
the following equation

[

ėi

ėp

]

=

[

Ji

Jp

]

V̂ (19)

By rearranging (18) and substituting in (19) we get the
convex combination system ė = Ae. Here,

A = ωA1 + (1 − ω)A2, (20)

where A1 =

[

−I6 0
−JpJ

+
i 0

]

and A2 =

[

0 −JiJ
−1
p

0 −I6

]

.

The matrices A1 and A2 define, with the parameter ω, a one
parameter family of matrices in the form given in (20). This
family is called [11] the matrix pencil γω(A1, A2), ω ∈ [0, 1].

Theorem 1: The pair of linear systems given in (20) has a
quadratic common Lyapunov function if and only if all the
matrices in γω(A1, A2) and in γω(A1, A

−1
2 ) are stable [12].

Let us have a closer look to the matrix pencil
A = γω(A1, A2) that is given in (20). In fact, this matrix
pencil can be written as

A =

[

−ωI6 −(1 − ω)JiJ
−1
p

−ωJpJ
+
i −(1 − ω)I6

]

. (21)

One can easily note the linear dependency between the first
six rows and the last six ones. This is due to the fact that the
matrices in the upper right corner and lower left corner are the
inverse of each other. This yields a system with six negative
eigenvalues and six zero eigenvalues. However, the six zero
eigenvalues are owing to the special form of the matrix A and
will not move to the positive part when the system is affected
by noise or disturbance. Consequently, we can conclude that
all matrices in the matrix pencil A = γω(A1, A2) are
stable whenever the matrices Ji and Jp are invertible and
nonsingular. However, this is ensured in the neighborhood of
the equilibrium point where these matrices Ji and Jp are fixed
with full rank. Similarly, it can be shown that all matrices in
the matrix pencil A = γω(A1, A

−1
2 ) are stable.

According to Theorem 1, ∀ ω ∈ [0, 1], the convex combi-
nation of the systems given in (20) is stable and there exist a
quadratic common Lyapunov function. A common Lyapunov
function means that there exist symmetric positive definite
matrices P and Q such that AT P + PA = −Q. In other
words,

ω
(

AT
1 P + PA1

)

+ (1 − ω)
(

AT
2 P + PA2

)

= −Q, (22)

ω eT
(

AT
1 P + PA1

)

e + (1 − ω) eT
(

AT
2 P + PA2

)

e

Fig. 2. Representation of the velocity vectors in 2D space.

= −eT Qe < 0, (23)

∀e ∈ Rn\{0}. In other words, Rn\{0} is covered by the union
of the two open conic regions: (i) <1 = {e, eT (AT

1 P +
PA1)e < 0}, and (ii) <2 = {e, eT (AT

2 P + PA2)e < 0}.
Thus, the function V (e) = eT Pe decreases along solutions
from A1 in region <1 and along solutions from A2 in region
<2. While all matrices in the matrix pencil γω(A1, A2) are
stable, the Lyapunov function V (e) decreases along solutions
for all ω.

B. Global Stability

It was proved in [13] that for both IBVS and PBVS, there
exist a range of camera poses where under a visual servoing
algorithm both image error ei and pose error ep decrease to
zero. In addition, if the pose error consists of a translation and
sufficiently small rotation, the system is within this region.
Consequently, a pose error with a translation and sufficiently
small rotation can be regulated to zero either using IBVS or
PBVS.

To analyze the behaviour of the proposed integrated system
in the nieghborhood of an image local minima, a 2D projection
of the velocity vector is presented in Fig 2. The point A
represents a current work point in the nieghborhood of an
image local minima represented by the point L, while the point
G represents the global minima. In the nieborhood of L, the
direction of V̂ (αim) is toward L. Where PBVS is globally
stable or at least local minima may occur in the neighborhood
of the global one G, the vector V̂ (αpo) is independent on L and
always points toward the global minima G. It is clear that the
weighted sum of these two vectors V̂ (αim) and V̂ (αpo) will
drive the system away from the local minima L toward the
global minima G. After a few iterations, the system escape
from the local minima by getting out of its neighborhood.
Regardless the rotation error has been increased or decreased
in the neighborhood of the local minima it will start decreasing
again after escaping it up to the reaching the stability region. In
the stability region i.e. the neighborhood of the global minima,
both image error and pose error decrease monotonically to the
global minima.

We argue that the rotation part in the pose error decreases to
small value in spite of the existence of an image local minima.
This allows the translation part to start decreasing when the
rotation error becomes sufficiently small. Because 0 < ω < 1,
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Fig. 3. The image features trajectories and pose error in presence of Cartesian
local minima. Gans method in the first row and our integration method in the
second row.

the system avoids the local minima in the image and Cartesian
spaces. In fact, the local minima in IBVS and PBVS are not
correlated and do not tend to happen together. This justifies
the claim that our method is globally asymptotically stable.

VI. SIMULATION AND RESULTS

We present the simulation experiments where our proposed
method is compared to the previous hybrid methods, namely
switching methods proposed by Gans and Hutchinson [8], [13]
and the one proposed by Chesi et. al. [9]. In the remaining of
this paper and for comparison purpose, we call the first method
as Gans’ method and second one as Chesi’s method. These two
methods in addition to our proposed one are implemented.

The comparison is carried out for two positioning tasks.
First one is with a 180 degrees rotation error around the camera
optical axis. Using this task we will evaluate performance of
the algorithm for keeping the visibility of features. The second
task is a general positioning task that contains rotational
and translational errors. The task is useful to evaluate the
time of convergence and the continuity of the control signal.
The servoing target object consists of four planar points.
We assume a perspective projection camera model with unit
aspect ratio. The processing rate is considered to be fixed at
25 frame/Sec.

A. Feature-visibility and Local Minima

The positioning task with 180 degrees rotation error is used
here. Our proposed method is compared to Gans’ method and
gave satisfactory results for the feature visibility as shown
in Fig 3(a). Gans’ method started with PBVS, producing a
pure rotation about the camera optical axis. When the image
features approach the image border, the control switches to
IBVS, in order to keep the image features visibile. IBVS
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Fig. 4. The image error and velocity command in presence of Cartesian
local minima. Gans method in the first row and our integration method in the
second row.

produces a straight line image trajectory but it is acompanied
with a camera retreat in the Cartesian space. At the retreat
threshold, the control switches back to PBVS to produce the
pure rotation about the camera optical axis again. Where the
image features stay far from the image border the control will
continue with PBVS till the desired pose. Owing to errors in
the pose estimation process, the system converges to a local
minima in the nieghborhood of the desired pose. In Fig 3(a),
the final position of the image features is a little diffirent from
the desired one while the pose error in Fig 3(b) converges to a
small value near to its zero dsired value. Figures 4(a) and 4(b)
show the local minima where the velocity convergs to zero and
the image error does not.

Our method successfully keeps the image features visibile,
see Fig 3(c), during the servoing process. In the same figure
one can see that the image features converge perfectly to the
desired position depecting a global minima. The method also
behaves perfectly with respect to the Cartesian local minima
where the IBVS controller works to aviod the local minima
while the output of PBVS controller is nullified. This is clear
from the pose error in Fig 3(d). The image error and velocity
command in Figs 4(c) and 4(d) converge both to zero that
depicts a global minima.

B. Discontinuity and Convergence Time

To evaluate the time of convergance and the smoothness
of the velocity control signal, we use a general positioning
task with both rotational and translational error. We compare
it with both methods, Chesi’s and Gans’ one. Gans’ method
(Figs 5(a) and 5(b)) show a discontinuity in the control signal
due to the switching between IBVS and PBVS. In Chesi’s
mehtod (Figs 5(c) and 5(d)), there are a frequent switching.
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Fig. 5. The image error (left) and velocity command (right) show the
discontinuity in Gans’ method, (a) and (b), and Chesi’s, (c) and (d). Our
integration method shows faster convergence and smooth velocity command
in (e) and (f).

This means a discontinuity in the control signal. In contrast to
these two methods, our method (Figs 5(e) and 5(f)) provides
a continuos and smooth control signal i. e. the velocity screw
command.

The switching design of Gans’ and Chesi’s mehtods, in
order to keep the visibility of the image features, came out with
a delay in the convergence. This is clear from the image error
graphs in Fig 5(a), 5(c), and 5(e). From the figures one can
note that our integration method converges within 3-4 seconds,
while Gans’ method converges within 6-7 seconds and Chesi
et. al. mehtod needs 9-10 seconds to converge for the same
task.

VII. CONCLUSION AND FUTURE WORK

The method presented in this paper propose a unique
solution that satisfies a set of widly addressed requirments
in visual servoing literature. These requirments are such as
feature visibility, local minima, and straight camera trajectory.
The method gives similar performance to previous methods
like Gans’ one with respect to image features visibility.
However, it gives faster convergance and continuous velocity

control signal in contrast to the discontiuity present in other
switching methods like Gans’ and Chesi’s ones. This method
is a part of larger activity that aims to design a unified frame
work to estimate the 3D information online. Then, use these
information to improve the performance of visual servoing
using this integration method.
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