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Abstract— Many problems in computer vision such as pose
recovery and structure estimation are formulated as a min-
imization process. These problems vary in the use of image
measurements directly or using them to extract 3D cues in the
minimization process. Hybrid methods have the advantage of
combining the 2D and 3D visual information to improve the
performance over the above two methods. In this paper, we
present a new formulation for minimizing a class of hybrid error
functions. This is done by using 2D information from the image
space and 3D information from the Cartesian space in one error
function. Applications to visual servoing and image alignment
problems are presented. The positioning task of a robot arm has
been formulated as a minimization problem. Gradient decent as
a first order approximation and Gauss-Newton as a second order
approximation are considered in this paper. Simulation results
show, comparing with 2 1/2 D hybrid method, that these two
methods provide an efficient solution to the features visibility
problems and the camera trajectory in the Cartesian space.

I. INTRODUCTION

Minimization techniques play an essential role in solving a
wide range of computer vision problems. Examples of these
problems are camera pose recovery, motion and structure from
video, visual servoing, image registration, augmented reality,
tracking, etc. Most of the solutions to these problems optimize
an appropriate objective function of the position. This function
may be defined in the image (2D) space or in the world and
camera (3D) space.

A large number of the computer vision applications estimate
the camera position as a solution to the Least Squares Mini-
mization (LSM) problem. Solutions based on LSM formula-
tion are known to be optimal when independent and Gaussian
measurement errors are assumed. One can distinguish between
linear least-square minimization (LLSM) and non-linear least-
square minimization (NLSM) based on the linearity or non-
linearity of the cost function to be minimized.

In the case of linear cost functions, LLSM is effective and
a closed form solution can be obtained. An example is the
problem of 3D alignment by a rigid transformation. Most of
the cost functions that use 3D features for pose alignment such
as 3D points and pose information are linear with respect to
the pose error. Therefore, LSM can produce an optimal closed
form solution to such problems. However, many algorithms
try to get an iterative solution from LLSM for the purpose of

enforcing constraints like certain control trajectories or to add
robustness.

In contrast, minimizing a non-linear function falls in the
NLSM class. However, this minimization cannot be solved in
closed form and requires iterative solutions to the optimization
problem as an intermediate step in solving a larger problem.
Cost functions from the 2D image space, such as the repro-
jection error, are highly non-linear and lead to solutions from
NLSM. Usually, these solutions require an initial camera pose
estimate. In applications such as visual servoing, a function of
the initial pose estimate is already available.

The error function to be minimized may be defined in the
image space as function of the reprojection error. The repro-
jection error is the squared distance between the projection
of the 3D point represented in the current pose and their 2D
coordinates measured in the desired pose. Examples about this
error function are in 2D tracking applications. Another error
function that is usually minimized is the distance between the
current pose and the desired one as defined in the special
Euclidean group SE(3) = R3 × SO(3). This error
function is estimated from the object pose in both desired
and current camera frame using a priori knowledge about
the scene, like position-based visual servoing, registration and
augmented reality. Table I summarizes a comparison between
2D and 3D visual information and algorithms from different
aspects.

In this paper, we propose a hybrid (2D-3D) cost function
that contains information from the 2D image space and the 3D
pose space. The closest work to ours is the error function that
was proposed in the visual servoing literature [1], [2]. In [1],
the error function was defined as a 6-vector. The 3-vector that
contains the 2D visual information from the image space is
used to recover the position of the camera, where the 3-vector
that contains the 3D visual information from the pose space
is used to recover the orientation of the camera. In contrast,
our method uses each of the image space information and pose
space information to recover the full camera pose information,
both position and orientation. Both 2D and 3D errors are
concatenated in a 12-vector and minimized together. In such
a minimization method, the minimization process search for
a solution that minimizes both the 2D error from the image
space and the 3D error from the pose space together.



TABLE I

A BRIEF COMPARISON BETWEEN 2D AND 3D VISUAL FEATURES IN OPTIMIZATION PROCESS.

2D Features from the Image Space 3D Features from the Cartesian Space

Information that are extracted from image measurements are usually called
2D information. This visual information is represented using features such
as points, lines, region of interest, contours, etc.

Visual information that represent the pose and/or the depth are called 3D
information. This is represented by pose (position and orientation), 3D lines,
3D points, etc.

Using 2D visual features, error functions like pose and structure errors can
be estimated using iterative non-linear minimization methods.A linearization
method is usually needed for efficient numerical solution.

A linear relationship between these 3D features and the estimated parameters
usually exist. A closed form solution using linear minimization process can
often be found

The 2D visual features are extracted from the image and used directly in
the minimization process.

The 3D information are obtained by processing an information extracted
from the image itself along with the a priori knowledge about the camera.

Using 2D features from the image space often assume that the camera is
internally calibrated.In case of estimating 2D parameters like homography,
the camera calibration is not required.

The camera calibration is necessary for using any 3D features in the
estimation process. The image is the only source for the measurements.
Obtaining 3D information using triangulation needs camera calibration.

II. MINIMIZATION APPROACHES FOR DIFFERENT

COMPUTER VISION APPLICATIONS

A. Augmented Reality Applications

Vision-based augmented reality system is an attractive inter-
face for various applications such as video games, architecture,
interior design, etc. Usually the focus is on the registration
techniques that allow alignment of real and virtual worlds
using images acquired in real-time by a moving camera. In
such systems AR is mainly a pose (or viewpoint) computation
issue. The problem is mainly addressed as the pose computa-
tion problem [3].

The most common methods, suitable for AR applications, to
compute the pose, rely on indoor and outdoor fiducial markers.
In the related computer vision literature, geometric features
considered for the estimation are often points, segments,
straight lines, contours or points on the contours conics, cylin-
drical objects or a combination of these different features [4].
Another important issue is the registration problem. Purely
geometric numerical and/or iterative [5] approaches may be
considered. Linear approaches use least-squares method to
estimate the pose. Full-scale non-linear optimization tech-
niques consist of minimizing the error between the observa-
tion and the forward projection of the model. In this case,
minimization is handled using numerical iterative algorithms
such as Newton-Raphson or Levenberg-Marquardt. The main
advantage of these approaches are their accuracy. The main
drawback is that they may be subject to local minima and,
worse, divergence if initialization is not properly done.

These 2D-3D registration techniques rely on the use of
a 3D model of the tracked objects. When such 3D models
are not available, other approaches are required. If the full
sequence is available a priori (such as for post-production
applications), bundle adjustment techniques are considered.
Bundle adjustment techniques involve estimating jointly op-
timal values for the scene structure and camera parameters
using non-linear minimization techniques, which differ based
on the parametrization.

B. Image Registration and Alignment

The registration of 3D objects is an important problem in
computer vision and especially in medical imaging and Geo-

registration. It arises when data acquired by different sensors,
at different places, and/or different time. Under the rigidness
assumption of the objects to be registered, the problem is
to recover the six parameters of a rigid transformation [6].
Whereas 2D images taken at different times do not necessarily
represent the same spatial cross section, and do not contain the
information necessary for correcting a misalignment, true 3D
image acquisition makes the full six degree of freedom regis-
tration possible [7]. A general approach to image registration
has three steps:

1) definition of common features found in all images
2) formulation of a transformation function to align image

coordinate systems
3) reformatting of one (or more) images to bring datasets

into alignment
A number of methods already exist [7], which explicitly mini-
mize an energy function derived with respect to the parameters
of the six degrees of freedom transformation. Research still
continues on methods such as those avoiding the local minima
and ensuring the convergence. Figure 1 shows an example
about image alignment. In this figure two images of a face are
given (Figs. 1(a,b)) along with the depth maps for each face
model (Figs 1(c,d)). Using selected features from the image
and its given map, the pose of each face is estimated iteratively.
Here, 2D features or 3D features can be used.

C. Pose Alignment by Visual Servoing

Visual servoing schemes use one or more cameras along
with computer vision algorithms to control the position of a
robot arm or mobile robot with respect to an object or a set
of feature of the object to be manipulated. It is used in a wide
range of applications such as robot navigation, lane tracking
by vehicles, and industrial manipulation.

The essence of visual servoing is to move the concerned
object from the current pose to a desired pose given a
current and desired images. This is essentially obtained by
minimization of an error function. Visual features are extracted
from the two images and used to formulate an error function
between the current pose and the desired one. The role of the
minimization process is to regulate this error function. The
image features can be used directly in the definition of the
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Fig. 1. Example of two images of a face from different poses in (a) and (b).
The depth map corresponds to each image is given in (c) and (d). Features
may be selected from the two images and matched to its depth from the depth
map.

error function. This leads to a formulation of the 2D error
function that is minimized in the image space. These image
features may also be used to formulate an error function in the
pose space such as the error between the position parameters
and the error between the rotations parameters.

Another application of minimization process in visual ser-
voing is tracking the visual features either in the image space
or in the pose space. This is usually done by recovering the
camera motion in the 3D Cartesian space or the motion model
in the 2D image space.

III. CAMERA POSE RECOVERY TASK AS A MINIMIZATION

PROCESS

The camera pose recovery task is to estimate the desired
camera P ∗ starting from an initial camera pose P ∈ R3 ×
SO(3). In other words, the problem is to minimize an error
vector e(s) of visual features s(P ) by finding a vector ∆P that
minimize a cost function E(s(P )). Viewing the problem as a
nonlinear least squares minimization allows us to formulate
the following cost function

E(s(P )) =
1
2
(s(P ) − s(P ∗))T (s(P ) − s(P ∗)). (1)

In the remaining of this section, two minimization methods
will be reviewed. The first one is based on the first order
Taylor series approximation of the cost function. This method
is called the gradient decent minimization. The second method
is based on the second order Taylor series approximation of
the cost function. This is called the Newton minimization.

A. Gradient Decent Minimization

Here, an approximation, using the first order derivative, of
the above cost function is evaluated at the desired pose P ∗.

The cost function given in (1) can be written as

E(s(P ∗)) ≈ E(s(P )) +
∂E(s(P ))

∂P
∆P. (2)

The gradient of the cost function ∂E(s(P ))
∂P is given as

∂E(s(P ))
∂P

= (s(P ) − s(P ∗))T ∂s(P )
∂P

= e(s)T J(P ), (3)

where e(s) = s(P ) − s(P ∗). The criteria in gradient decent
minimization is to move in the direction opposite to the
gradient. Indeed, the required change in the pose is

V = ∆P = −λJT (P )e(s), (4)

where λ is a positive constant parameter that defines the step
size of the minimization process.

This method is known as the Jacobian transpose method
in the robot control literature and was used in [8], [9] and
recently restated in [10]. However, gradient decent methods
are known to have a slow and linear convergence rate.

B. Newton Minimization

Here, an approximation using the second order derivative
of the cost function is evaluated at the desired pose P ∗. The
cost function given in (1) can be written as

E(s(P ∗)) ≈ E(s(P )) +
∂E(s(P ))

∂P
∆P +

1

2
∆P T ∂2E(s(P ))

∂P 2
∆P.

(5)
The first order term ∂E(s(P ))

∂P
is as given in (3), while the

second order term ∂2E(s(P ))

∂P2 is given by

∂2E(s(P ))
∂P 2

= JT (P )J(P ) +
n∑

k=0

Hk(P )ek(s). (6)

The matrix Hk is the Hessian matrix of the function ek(s).
In Gauss-Newton minimization, the second order derivative is
approximated by

∂2E(s(P ))
∂P 2

= JT (P )J(P ). (7)

Indeed, the required change in the pose is

V = ∆P = −λJ+(P )e(s), (8)

where the matrix

J+(P ) =
(
(JT (P )J(P )

)−1

JT (P )

is the pseudo-inverse of the matrix J . This method is known
as the Jacobian Pseudo-inverse method and widely used in the
robot control and visual servoing [11].

One may note that this method can be obtained form the
gradient decent method. In this case, the error vector itself
e(s) is used in the minimization process instead of the cost
function E(s(P )).



IV. MINIMIZING A HYBRID ERROR FUNCTION

Based on the type of the visual features s(P ∗) used in the
minimization process, the cost function defined in (1) varies
from E2D(P ) for 2D visual features from image space to
E3D(P ) for 3D visual features from the Cartesian space.

If we consider the 2D coordinates of a set of
image points as features, the vector s(P ) becomes
s2D(P ) = [x1, y1, . . . , xN , yN ]T while the desired vector
s(P ∗) is s2D(P ∗) = [x∗

1, y
∗
1 , . . . , x∗

N , y∗
N ]T . Indeed, Equa-

tion (1) is rewritten as

E2D(s(P )) =
1
2
ei(P )T ei(P ), (9)

where
ei(P ) = s2D(P ) − s2D(P ∗). (10)

In contrast, 3D visual features such as the position and
orientation can be part of the feature vector s3D(P ) =
[Tx, Ty, Tz, uθ]T . The desired features are s3D(P ∗) = 0(6×1).
Similarly to (9) and (10), we can write

E3D(s(P )) =
1
2
ep(P )T ep(P ), (11)

where
ep(P ) = s3D(P ) − s3D(P ∗) (12)

It can be proved that minimizing either E3D(s(P )) or
E2D(s(P )) results in equivalent results. In other words,
E3D(s(P ∗)) = E2D(s(P ∗)) = 0.

Lemma 1: The cost function E3D(s(P )) = 0 if and only if
the cost funE2D(s(P )) = 0.

Proof: Let M = [X,Y,Z]T be a 3D point in the current
camera frame and m = [x, y, 1] is its perspective projection
into image I . The image point m is given as M = Zm.
Similarly, M∗ = Z∗m∗ are the correspondence points in the
desired camera frame. The cost function in the image space
E2D(s(P )) = 0 when ei(P ) = mi − m∗

i , while the cost
function in the 3D Cartesian space E3D(s(P )) = 0 when
M = M∗.

Proof of the IF condition:
The 3D point in the current frame relates to its correspondence
in the desired one by the R and T as

M = RM∗ + T ⇒ Zm = RZ∗m∗ + T (13)

m = m∗, Z = Z∗ ⇒ R = I, T = 0(3×1) (14)

Here, T = [Tx, Ty, Tz]T = 0(3×1) and R = I3. Here, R is
the matrix of the rotation represented by the axis u and angle
θ.

Proof of the ONLY IF condition:
Given that m = m∗, we have

1) Both camera frames are identical, In other words T =
[Tx, Ty, Tz]T = 0(3×1) and R = I3.

2) The error is a translation along the insight line passing
from the point mi.

3) The error is a rotation about the insight line passing from
the point mi.

4) Both cases 2 and 3 hold.

In fact, the cases 2-4 may hold by considering a single image
point i = 1, but they are totally incorrect if we consider more
than one point i ≥ 2.

Unfortunately, minimizing the cost function E3D(s(P )) has
a contradicted behavior with minimizing E2D(s(P )). Some of
the advantages and drawbacks of minimizing each of these two
function has been summarized in Table I. Hybrid methods aim
at reducing the undesirability while keeping maximizing the
advantages of each of the two function minimization.

Let us define a hybrid cost function as the weighted sum of
the two E3D(s(P )) and E2D(s(P )) function as follows

Eh(s(P )) = λ1 E2D(s(P )) + λ2 E3D(s(P )). (15)

Here, λ1 and λ2 are positive scalar factors. It can be easily
shown, using Lemma 1, that the hybrid function given in (15)
is nullified only when P = P ∗. The two constant λ1 and λ2

play the role of the step size of the minimization process in
addition to the integration ratio between 2D and 3D spaces.
While minimizing this cost function, the process searches for a
solutions that reduce the value of the two individual functions
E3D(s(P )) and E2D(s(P )). In the following two subsections
we will show how the minimization methods presented in
Section III can be used to minimize this hybrid cost function

A. Gradient Decent Method

Consider a positioning task to be achieved using the gradient
decent minimization method. The hybrid cost function given
in (1) will be rewritten as

Eh(s(P )) =
λ1

2
E2D(s(P )) +

λ2

2
E3D(s(P )), (16)

where the division by 2 is useful to simplify the derivation
process. The gradient vector of this cost function is given as

∂Eh(P )
∂P

=
λ1

2

∂
(
ei(P )T ei(P )

)
∂P

+
λ2

2

∂
(
ep(P )T ep(P )

)
∂P

,

= λ1ei(P )T
∂
(
ei(P )

)
∂P

+ λ2ep(P )T
∂
(
ep(P )

)
∂P

,

= λ1ei(P )T Ji(P ) + λ2ep(P )T Jp(P ). (17)

The matrix Ji(P ) = ∂(ei(P ))
∂P is the image Jacobian matrix, and

the other matrix Jp(P ) = ∂(ep(P ))
∂P is the Cartesian Jacobian

matrix. To compute the change in the pose that minimizes
the above cost function, the change should be in the opposite
direction to the gradient. Indeed, the change in the pose is
given as

∆P = −λ
∂Eh(P )T

∂P
= −λ

(
JT

i (P )ei(P ) + JT
p (P )ep(P )

)
, (18)

where in most practical situations we can set λ1 = λ2 = λ.
One can note that local minima may occurs if the gradient(

JT
i (P )ei(P ) + JT

p (P )ep(P )
)

= 0. This means that either

ei(P ) = ep(P ) = 0, i.e. the global minima case, or (i)
ei(P ) ∈ Ker(JT

i (P )) and (ii) ep(P ) ∈ Ker(JT
p (P )) in the

same time. The case (ii) hold for global minima only where
Ker(JT

p (P )) = {0(6×1)}. In other words, problem relating to
local image minima and Jacobian singularity will not affect
the convergence here.



B. Gauss-Newton Method

To achieve the minimizing task defined by the hybrid cost
function Eh(P ) given in (15), we substitute in (8) to get

∆P = −λJ+(P )
[

ei(P )
ep(P )

]
, (19)

where the matrix J (P ) is given

J (P ) =

[
∂ei(P )

∂P
∂ep(P )

∂P

]
=

[
Ji(P )
Jp(P )

]
. (20)

It can be shown that

J +(P ) =
(
JT

i Ji + I
)−1[

JT
i JT

p

]
. (21)

Where Ker(JT
p (P )) = {0(6×1)}, the velocity vector will be

nullified only at the desired position without suffering from
any local minima.

To summarize, It is shown that minimizing the hybrid
proposed function is realizable. This function Eh(P ) has a
common global minima with each of E2D(P ) and E3D(P ).
The minimization of Eh(P ) is done using NLSM owing
to the non-linear part arising from the 2D image space.
However, global minima is the optimal solution that can be
asymptotically obtained after a limited number of iterations.

The integration between 2D and 3D can be biased using
the scalar factors λ1 and λ2. This gives a sense in designing
a high level rule that computes these factors λ1 and λ2. A
proper computation of the integration factors can be used to
improve the performance of the whole process by individually
taking advantages of the 2D or the 3D features used in the error
function. For example, it is possible to put λ1 = ω2D

ω2D+ω3D
and

λ2 = ω3D

ω2D+ω3D
. The weights λ1 and λ2 are the importance

factors of the 2D and 3D informations respectively [12].

V. RESULTS AND DISCUSSION

A. Application to Visual Servoing

The minimization methods presented in section III are
widely used in the vision-based control, namely in visual
servoing. Here, we will call the control law based on (18)
as the Jacobian Transpose Control (JTC) method, while the
control law based on method given in (19) will be called
the Jacobian Pseudo-inverse Control (JPC) [10]. We present
the simulation experiments where the proposed methods are
compared to previous method like IBVS, PBVS, and hybrid
methods, namely 21/2D visual servoing. These methods in
addition to our proposed method are implemented in a simu-
lation framework.

The comparison is carried out for a positioning task. The
task is a general positioning task that contains a rotational and
translational errors. This task is useful to evaluate the camera
trajectory in the Cartesian space. The camera trajectories using
our two JTC and JPC methods and methods like IBVS, PBVS
and the hybrid 21/2D VS are compared here.

The servoing target object consists of six non-planar points.
The object pose, and initial and desired camera pose with
respect to a world reference frame are given in Tables II. The

Tx Ty Tz R P Y
Initial pose 2.15 -2.1 0.0 0.8 -0.6 -1.59

Desired pose 0.0 -1.5 0.0 0.0 0.0 -1.57
Object pose 0.0 0.0 0.0 0.0 0.0 -1.57

TABLE II

THIS TABLE SHOWS THE INITIAL AND DESIRED CAMERA POSE, AND

OBJECT FRAME POSE WITH RESPECT TO THE WORLD REFERENCE FRAME.

X Y Z X Y Z
P1 0.0 0.0 0.0 P2 0.25 0.25 0.0
P3 -0.25 0.25 0.0 P4 -0.25 -0.25 0.0
P5 -0.25 0.25 -0.2 P6 -0.2 -0.2 0.1

TABLE III

THE 3D POINTS COORDINATES IN THE OBJECT FRAME.

object point coordinates are given in Tables III. We assume a
perspective camera model with unit aspect ratio of pixels.

1) Camera trajectory in the Cartesian Space: Here, we
consider the general task with both translational and rotational
motion. First we present the results from PBVS. This method
minimizes a function of only 3D visual information i.e. the
pose 6-vector. The camera trajectory in the Cartesian space
is a straight line. This is the shortest camera path. Figs 2(a)
and 2(b) show the features trajectory in the image space and
camera trajectory in the Cartesian space respectively. However
the image trajectory is a complex curve and some features have
got out of the camera field of view. In practice, this considered
as process failure.

In contrast, IBVS that minimizes a function of only 2D
visual information i.e. the 2D image coordinates of the feature,
produces, in Figs 2(c) and 2(d) a very satisfactory image
trajectory. This straight line image trajectory will strictly keep
the object features visible during the servoing process. The
camera trajectory is unpredictable and this may cause the arm
of the robot to get out of its workspace.

The hybrid method used in this simulation i.e. 21/2D visual
servoing, shows in Figs 2(e) and 2(f), an intermediate results.
The image trajectory has been improved comparing to PBVS.
Unfortunately, there is no much improvement in the Cartesian
camera path, it is not straight line. Using PJC method produces
a camera trajectory that is very much near to the straight
line. See Fig 2(g). Similar results for the image trajectory
are obtained as shown in Fig 2(f). There is no significant
deviation from the straight line trajectory. Therefore, it is
less probable to leave the camera field of view. TJC method
produces a more complicated image trajectory but features
are still alwayes visible (see Figs 2(i)). The camera path is
approximatly straight line as shown in Fig 2(j).

The proposed method, which minimizes a hybrid (2D-3D)
error function that span all the degrees of freedom of the
Cartesian space, shows an improved performance in image
space and Cartesian space together. In both minimization
methods, gradient decent and Gauss-Newton, image features
are less probable to leave the image while the camera performs
less retreat in the Cartesian space. An improvement in the
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Fig. 2. Feature trajectories in the image space and the camera trajectory in
the Cartesian space. PBVS in (a) and (b), IBVS in (c) and (d),21/2D visual
servoing in (e) and (f), JPC visual servoing in (g) and (h), JTC visual servoing
in (i) and (j). The desired positions of the image features are marked by +.

features behaviour in the image space for all considered points.
Most of previous hybrid methods improve the trajectory of
single point only from the image.

VI. CONCLUSION

We propose a hybrid cost function for solving computer
vision problems from areas like augmented reality and Vision-
based control. Solutions to these problems are based on linear
and non-linear optimaization techniques. The proposed func-
tion is a weighted summation of two individual functions. One
of them formulated in the image (2D) space and the other one
in the Cartesian (3D) space. Experiments show considerable
improvements in the bevaviour of the minimization process in
both the image space and Cartesian space.
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