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Abstract — Visual Servoing is an important prob-

lem in robotic vision. In this paper we propose al-

gorithms for visual servoing using novel view pre-

diction. A visual servoing control law robust to

large proportion of noisy outliers in image data

is proposed. The method employs robust statisti-

cal techniques and novel view prediction. We also

propose a visual servoing control law which results

in faster convergence into a desired position. This

algorithm employs novel view synthesis to mini-

mize an error over a number of future views. We

also show that view prediction can be effectively

used for retaining the image features in the cam-

era field of view during the motion. These tech-

niques are validated with experiments and com-

pared with other robust methods in a simulation

framework.

I. Introduction

Visual servoing is the process of positioning the end ef-
fector of a robot manipulator with respect to a target
object or a set of features. This is achieved by processing
the visual feedback and minimizing an appropriate error
function. The visual feedback can be image features or
object pose with respect to the camera frame.

Based on the visual information, visual servoing sys-
tems can be classified to three categories [1]: position-
based (3D), image-based (2D), or hybrid (2 1

2D) visual
servoing. In image based visual servoing, 2D visual in-
formation is extracted from the image and used directly
in the control law to generate the control signal i.e., the
screw velocity of the robot end-effector. This velocity is
computed from an error function of the image space fea-
tures and through the image Jacobian or the interaction
matrix [2]. The accuracy of the computation depends
on features detection, matching, tracking, and modeling
algorithms employed during the process. If the correspon-
dences between features contain errors, the visual servo-
ing process fails to converge, and the system will reach
inaccurate final state or a local minima [3].

In addition to the convergence issues, features may get
out of the camera field of view and visual servoing can
become intractable. Without any constraints in the im-
age space, as in the case of position based-based visual
servoing, the image features may leave the camera field of
view. Features may leave the camera field of view when

there is a rotation about Z axis for features near to the i
view boundaries [4]. It could also happen in presence of
a constant interaction matrix estimation [5].

This paper presents three applications of novel view
synthesis to the visual servoing problem.

• We show that a visual servoing control law robust to
image noise and measurements error can be derived
with the help of view prediction.

• Another application of view synthesis is in minimiz-
ing the error function in an image based visual ser-
voing algorithm based on information available from
future views. This results in faster convergence.

• Finally we demonstrate its application in retaining
the image features in the camera field of view during
the servoing process.

In our work [6], we proposed a new method for robust
visual servoing using multiple view geometry. We employ
the epipolar constraints to produce an image based vi-
sual servoing control law that is robust to image noise.
In the visual servoing literature, Comport et al. [7] pro-
posed an M-estimator based statistical approach that uti-
lizes redundancy in image features to detect and reject
the outliers. The inability to reject outliers in presence of
excessive noise is a drawback of this method. Our method
uses both epipolar geometry and statistical techniques for
robust visual servoing. Image-based visual servoing needs
initial and desired images for calculation of the motion
parameters. We improve the robustness by using an addi-
tional image with known relationship to the initial frame.
From the image acquired by the camera and a predicted
image from the two known frames, we identify outliers for
improving the robustness.

View prediction can also help in improving the conver-
gence time and keeping the image features in the camera
field of view. Novel view synthesis makes it possible to
minimize the error function along a future horizon of it-
erations. Classical methods minimize the error measure
computed from one (current) set of image measurements.
The velocity imparted to the robot arm at every time
instant, is used to compute the expected pose in future
time instances. Predicting the next view will give a sense
about the next position of the feature in the image. If
the feature is going to get out of the camera field of view,



a backward translation along the Z of the camera frame
is applied to keep the feature within the boundary of the
view.

II. Background

A. Image-based Visual Servoing

The problem of image-based visual servoing is that of po-
sitioning the end-effector of a robot arm such that a set
of image features S reaches a desired value S∗. The set S

can be composed of the coordinates of points that belong
to the target object. Other kind of geometric features like
straight line segments, angles, or spheres can also be used.
Consider the error function

e(S) = S − S∗, (1)

which is the difference between the current feature vector
S and the desired one S∗. By differentiating this error
function with respect to time, with the desired features
S∗ remaining constant, we get

de

dt
=

dS

dt
= (

∂S

∂P
)
dP

dt
= LSV, (2)

where S is a (2N × 1) features vector represented by the
image coordinates (x, y), and N is the number of points.
The velocity V = (vT , ωT )T is the camera velocity, v is
translational velocity and ω is rotational velocity. The
pose vector P = (x, y, z, α, β, γ) is a (6× 1) vector, where
(x, y, z) represent the 3D coordinates of the camera frame
position and the three angles (α, β, γ) represent the cam-
era frame direction with respect to a reference frame. The
(2N ×6) matrix LS is called the interaction matrix or the
image Jacobian. It relates the changes in the image space
to the changes in the Cartesian space.

The main objective of the visual servoing process is to
minimize the error function e(S). For exponential con-

vergence of the minimization process , we need de(S)
dt

=
−λe(S). By substituting in (2) and using a simple pro-
portional control law, the required velocity of the camera
can be shown to be

V = −λL+
S e(S), (3)

where L+
S is the pseudo inverse of the Jacobian matrix

LS , and λ is a scale factor.
A robust visual servoing control law based on M-

estimator was proposed in [7]. The error function was
modified to be

e(S) = D[S − S∗],

where D = diag(w1, .., wi, .., w2N ) is a weighting matrix,
and N is the number of points. The weight wi = 0 if the
point is an outlier and wi = 1 if the point is an inlier. The
computation of weights wi is done using Tukey’s robust

function [8]. For this objective function, the control law
is given as

V = −λ[DLS ]+D[S − S∗]. (4)

One can see that the matrix D is being introduced to the
error function and the interaction matrix. Entries of the
interaction matrix that correspond to the outlier features
also will be nullified by the multiplication of zeros.

B. Novel View Synthesis

Epipolar Geometry describes the relationship between
corresponding points in two views. Suppose x and x′ are
the corresponding points in two views, then the epipolar
constraint has the form [9]

xT Ex′ = 0. (5)

The (3 × 3) matrix E is known as the Essential matrix

and has the rank 2. The Essential matrix maps a point x′

in one view to a line l = Ex′ in the other view. This line
is called the epipolar line. The essential matrix depends
on the relative geometry of the two cameras. Suppose the
relative transformation between the two cameras is given
by T =

[

R t
]

then, it can be shown that

E = RT [t]×, (6)

where the matrix [t]× is the antisymmetric matrix associ-
ated to vector t. The pairwise epipolar geometry can be
used to predict new views [9]. A correspondence between
two given images (x ↔ x′) constrains the point in the
third image x′′ to lie on the lines E31x and E32x

′. The
point in the third view is the intersection of these two
epipolar lines and is given by

x′′ = E31x × E32x
′. (7)

From the correspondence between two original views
and the required view defined in terms of essential ma-
trices, a novel view can be produced by transferring all
corresponding pixels to the new view by this method.

III. The Proposed Solutions

A. Image-based Visual Servoing Using Predictive views

It is well known that given two views of a scene, a third
view from any desired location can be computed. Such
view prediction techniques may be used in conjunction
with visual servoing to achieve faster convergence. The
basic idea is to use view prediction to predict errors in N

views that would be obtained by moving N steps as per
the classical control law, and then to compute the optimal
velocity for faster convergence based on this additional
information. Our approach is as follows.



Let us choose the following objective function

Ei =
1

2

i+N
∑

j=i

(Sj − S∗)T (Sj − S∗), (8)

where Ei is the expected error in the next N time intervals.
Since, ∀j > i, Sj is a function of Si, we minimize Ei as a
function of Si. We proceed by iteratively minimizing Ei

using Gradient Descent. At each step, we update feature
vector si in the following manner

Si+1 = Si − η
∂Ei

∂Si

. (9)

We compute the gradient as

∇Ei =
∂Ei

∂si

=

i+N
∑

j=i

[

(Sj − S∗)T

(

∂Sj

∂Si

)]T

. (10)

The term
∂Sj

∂Si
can be written as

∂Sj

∂Si

=
∂Sj

∂rj

∂rj

∂Si

=
∂Sj

∂rj

∂rj

∂t

(

∂Si

∂t

)+

= LjVj(LiVi)
+

(11)
From equations (9 ), (10), and (11) and by some sim-

plification, we obtain the generalized control law the gen-
eralized control law

V̂i = − η

∆t
L+

i (LiVi)
+T





i+N
∑

j=i

(Sj − S∗)T LjVj





T

, (12)

where Vi and Li are the velocity vector and the Jacobian
matrix estimated from the current view. The velocity vec-
tor estimated along the N views starting from the current
view i is V̂i.

B. Robust Image-based visual servoing based on predictive

views

Here we propose a solution to the case of the propor-
tion of the noisy points is more than 50%. An additional
reference image is used to predict a virtual novel image.
The transformations between the current image and each
of the two initial and reference images are used to predict
the novel image. The predicted image is used to identify
the outlier points in the current image. A classification
process is defined to use the error between the data points
in the current image and its correspondences in the pre-
dicted image as a discriminant function. During the visual
servoing process, a constant value is assigned to the error
function which corresponds to the outlier point feature.
The error function given in (1) is modified as

ê(Si) =

{

Si − S∗ if Si is inlier.

e0(Si) if Si is outlier.
, (13)

here e0(Si) is a precomputed constant value of the visual
servoing error function. By substituting the error function
given in (13) in the equation (3), the control law will be
modified to becomes

V̂i = −λL+
i ê(Si), (14)

Consider an initial image I0 of a scene consisting of a set
of 3D points. In addition to the initial image, the camera
takes another image (reference image) Ir with a known
transformation between these initial and reference camera
positions T0r = [R0r, t0r]. Select a set of point features
S0 in the initial image I0 and another corresponding set
Sr in the reference image Ir. The novel image contains
the corresponding set to these two sets of point features.

The novel image computation is done using the veloc-
ity measurement of the camera. At each iteration of the
visual servoing process, the transformations between the
current image and the two (initial and reference) images
T0i = [R0i, t0i] and Tri = [Rri, tri] are computed. By sub-
stituting these two transformations in (6), the essential
matrices E0i and Eri are obtained. Using these essential
matrices and equation (7), the current predicted image is
computed.

The discriminant error function is defined. The set of
features Ŝi in the current predicted image is correspond-
ing to the sets S0 and Sr. Substituting the set Ŝi in the
control law which is given by (3) will give the camera
velocity that has been contributed by the Ŝi data set

V = −λL+

Ŝi
(Ŝi − S∗). (15)

Consider the term rpred = λ(Ŝi − S∗) as the state of the
current predicted image with respect to the desired one,
and the term ractu = λ(Si −S∗) as the state of the actual
or measured current image with respect to the desired
one. The error required for the discriminant function is
defined as r2

i = (rpred − ractu)2. In literature, these are
known as the residual values of the points Si. Using (2),
(3) and (15), we can write this error for each single feature
Si in the actual current image as

r2
i = (LSi

V + λ(Si − S∗

i ))2. (16)

The point Si is classified as an outlier if ri ≥ tσ , and is
classified as an inlier if ri < tσ , where the threshold value
tσ =

√
5.99σ [10].

C. Keeping the Features Visible

In order to keep all image features visible in the camera
field of view at all times, a backward translation along the
z axis is applied only when an image point estimation is
close enough from the image boundaries. Since a transla-
tion in the negative z direction of the camera frame will
cause image point to move toward the center of the image,



The distance between the the points and the boundary of
the image is mapped directly to the Vz components of the
velocity computed by the control law.

Vz = f(d(ui, vi)), (17)

where i = 1, .., N and d(ui, vi) is the smallest distance
of the point (ui, vi) to the image boundary in the next
estimated view, N is the number of point considered as
features. In addition, to keep tracked estimation of the
next view, we need always to store the previous view and
the transformation from it to the current view. By com-
puting the velocity from the current view, predicting the
next view is straight forward using the essential matrices
as explained in section II-D. Now we look for the smallest
distance of each point to the boundaries of the predicted
view. If d(ui, vi) ≤ d0, then Vz = −a, where aand d0 are
a suitable constant values. If the value of a is too small,
the point movement toward the image center will not be
enough to keep the point feature visible in the view. In
contrast, if the value of a is very high, it will push the
point much far toward the image center and the trajec-
tory will be undesirable. The value of the another con-
stant d0 should be suitable to the uncertainty and delay
in the robot arm and camera dynamics.

IV. Experimental Results

In the simulation experiments we used a set of 3D points
Xi, i = 1, ..., N . These points belong to an object in the
scene. A positioning task is considered for the study. The
robot arm has to move from initial position to a desired
position given as a desired image of the object. We con-
duct our simulation experiments in presence of excessive
noise using two robustness methods. The noise was intro-
duced in the matching and feature extraction step. The
image point coordinates are considered as features. Since
we have N points, the total number of features is 2N .
In other words, features S2i and S2i−1 are produced by
the point xi. If S2i or S2i−1 is considered as an outlier,
other one also labeled as an outlier also. The error given
in Equation (13) will be used for both the features.

In the first experiment a considerable noise was added
to 8 points out of 12 points. Without the proposed
method, (as shown in Figure 1 (b)) configuration leads
to an unstable situation or a local minima. Final state is
much different from the desired one. Better results are ob-
tained in the M-estimator based control law case reported
in [7], but the final state is still different from the desired
one. As shown in Figure 1 (c), M-estimator based method
is not able to detect the outliers in the case of large pro-
portion ( in our example 8 points out of 12). The third
case is where we use our proposed method. The method
was tested on different noise levels and proportions of out-
liers. Figure 1 (d), shows the result of our novel view
based method in the case of large amount of noise was

added to 8 points. They show that the final state has
reached the exact desired position, and the error perfectly
converged to the minimum value. Figure 2 shows a com-
parison between the camera trajectories in the Cartesian
space in the ideal case and each of M-estimator method
in Figure 2 (b) and our proposed method in Figure 2 (a).
The difference between the final and desired states is clear.
From this experiment we can conclude that our method
is efficient regardless to the number of image points dis-
turbed by noise. M-estimator methods are restricted to
the case where less than 50% of the points were distrubed
by noise.
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Fig. 2. Camera trajectory comparison with the reference
case. (a) with the M-estimator, (b) with the novel view

method.

The second experiment was done using the control law
given by equation 12 in section III-A. This control law
is developed based on the prediction of the future views.
Figure(3) depicts a comparison between the feature co-
ordinates error and trajectory of features in the image
space, this is in the two predictive view error and clas-
sical visual servoing error. It may be observed that the
proposed method converges faster.

The third experiment was curried out using the control
law proposed in [4] incorporated with the method pre-
sented in section III-C to keep the features in the camera
field of view. The results are depicted in Figure(4). Orig-
inally, the features are supposed to move along a circle.
Because of the effects of our proposed method to keep the
features visible, it moved along the shown trajectory.

V. Conclusion

A novel method has been proposed here to give a solu-
tions to visual servoing problems. One solution is a robust
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Fig. 1. Points trajectory in the image space of image features in case of the ideal scenario (a), noisy features without
robustness (b), using M-estimator for robustness (c) using our proposed novel view for robustness (d). The mark + in the

image indicates the desired position of the image point.

(a) (b)

(c) (d)

Fig. 3. A comparison in the convergence time and image
trajectory between predictive view visual servoing (b,d)and

classical visual servoing (a,c).

image-based visual servoing control law. This method
classifies the data points to outliers or inliers. The de-
tected outlier is introduced in the control law with a con-
stant error value. The core of this method lies in com-
bining between statistical methods and multiple view ge-
ometry. As an improvement to the previous work in the
robust visual servoing, this method can deal with large
noisy features proportion, even more than 50%. Another
solution is a fast convergence control law based on novel
view synthesis. In this control law an error function has
been minimized along a set of future set of views instead
of minimizing along tyhe current view as in the classical
visual servoing. The last solution is to the problem of
leaving the image features the camera field of view. Us-
ing the stimation of the next predictive view a reaction is
considered to mintain the feature in the visible part of the
image. As a future work, this can be extended to visual
servoing architectures like 3D and 2 1

2D visual servoing.
Other kind of featurs may be considered to improve the
robustness.
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