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ABSTRACT

Computing the transformation between two views of a pla-
nar scene is an important step in many computer vision ap-
plications. Spatial approaches to solve this problem need
corresponding sets of primitives – points, lines, conics, etc.
Identification of corresponding primitives in two images is
non-trivial, limiting the applicability of such approaches. In
this paper, we present a novel Fourier domain based ap-
proach that makes use of image intensities for computing
the image-to-image transformation. Our approach trans-
forms the images to the Fourier domain and then represents
them in a coordinate system in which the affine transforma-
tion is reduced to an anisotropic scaling. The anisotropic
scale factors can be computed using cross correlation meth-
ods, and working backwards from this, we compute the en-
tire transformation. It does not require any correspondences
thereby making it practically very useful. Applications to
registration and recognition are discussed.

1. INTRODUCTION

A number of spatial and frequency domain approaches have
been proposed to estimate the image-to-image transforma-
tion between two views of a planar scene. Most of them
are limited to similarity transformations. Spatial domain
methods need corresponding points, lines, conics, etc [3,
5, 6], whose identification in many practical situations is
non-trivial, thereby limiting their applicability. Many ap-
proaches to this problem are based on the tonal informa-
tion present in the scene [2, 13]. They compute features
using the intensity values of the image. Scale, rotation, and
translation invariant features have been popular, facilitating
recognition under these transformations.

Geometry of multiple views of the same scene has been
a subject of extensive research over the past decade. Im-
portant results relating corresponding entities such as points
and lines can be found in [3, 5]. Recent work has also fo-
cused on more complex entities such as conics and higher
order algebraic curves [6]. Invariants have been formulated

for contours in multiple views [10]. However, these ap-
proaches depend upon extracting corresponding entities such
as points, lines or contours and do not utilize the abundant
information present in the form of the tonal values in the
multiple views of the scene.

In this paper, we present an approach to recognize planar
scenes undergoing affine transformations between multiple
views. Our technique does not need any correspondence in-
formation across views. Kruger and Calway [7] described
a similar multiresolution approach to register images under
affine transformations. Lucchese [8, 9], presented a Fourier
domain based technique to compute the affine transforma-
tion between a pair of images of a planar scene. They used
radial projections of the energy and a series of non-linear
optimization procedures to estimate the transformation. The
performance of the algorithm, thus, depends on the choice
of good initial estimates. In comparison, the method pre-
sented here is linear and hence more robust. Frequency do-
main methods are in general superior to methods based on
spatial features [5] as the whole of the image information
is used for matching. They also avoid the crucial issues re-
garding the selection of the best features.

Section 2 describes some notations used in the paper.
The technique for recovering the planar homography relat-
ing two views of the same planar scene is discussed in Sec-
tion 3, while computation of the complete projective trans-
formation is described in Section 4. In Section 5, we discuss
the applications of this approach to the problems of rectifi-
cation, registration and recognition. A few concluding re-
marks are presented in Section 6.

2. PRELIMINARIES

When a planar object is imaged from multiple views, the
transformation which relates these views is known as a pro-
jective transformation or homography. It can be represented
by a 3 × 3 non-singular matrix, H, such that x

′ = Hx,
where x and x

′ are the homogeneous coordinates of the pro-
jections in two views of the same world point [5].

The subgroup of affine transformations is an important



specialization of the projective transformation group as gen-
eral projective homographies can be approximated in many
practical cases by affine homographies (eg. when the scene
object is far, the imaging system has high focal length [12],
etc.). An affine homography is a linear transformation in in-
homogeneous coordinates followed by a translation. It has
6 degrees of freedom accommodating for in-plane rotation,
scaling, translation, and shearing. Similarity transforma-
tions form a subgroup of affine transformations encapsulat-
ing in-plane rotation, scaling and translation. Many prob-
lems related to tonal images such as image registration have
been solved using Fourier Transforms for the case of simi-
larity transformations [11]. In most applications of practical
interest the transformation between views is more complex,
rendering these algorithms ineffective.

The Fourier Transform is used for a number of applica-
tions in image processing [4]. Given aN×N image g(x, y),
its frequency domain representation is obtained by taking its
2D Discrete Fourier Transform which is defined as

G(u, v) =

N−1
∑

x,y=0

g(x, y)W (ux+vy),

where W = exp(−j2π
N

).

3. PLANAR HOMOGRAPHY COMPUTATION

Let a homography H transforms the point [x y 1]T to [x′ y′ 1]T .
We first describe the relationship between the transforma-
tion that relates the images and the transformation that re-
lates their Fourier Magnitude Spectra. This relation is same
as the result reported in [1, 7] in a non-homogeneous coor-
dinate system.
Claim 1: If H is the affine transformation between the spa-
tial representations of two images, then the upper leftmost
2 × 2 minor of H

−T relates their 2D Fourier Magnitude
Spectra.
Proof: Let the affine homography between the two views

be H =





a b c
d e f
0 0 1



 and H
−1 =





a′ b′ c′

d′ e′ f ′

0 0 1



 be its

inverse. Then, x = a′x′ + b′y′ + c′ and x′ = ax+ by + c.
Similarly for y and y′. We can now relate two intensity dis-
tributions as g2(x, y) = g1(ax+ by + c, dx+ ey + f) and
its transform G2(u, v) as

=

N−1
∑

x′,y′=0

g1(x
′, y′)W (u(a′x′+b′y′+c′)+v(d′x′+e′y′+f ′))

= G1(ua
′ + vd′, ub′ + ve′)Wuc′+vf ′

.

Comparing the magnitudes, we have

|G2(u, v)| = |G1(ua
′ + vd′, ub′ + ve′)|. (1)
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Fig. 1. Transforming from uv space to αβ space

Thus, the transformation relating the Fourier magnitude spec-
tra is the upper left 2 × 2 minor of H

−T .

Transformation to αβ space We have shown above that
the Fourier Magnitude Spectra are related by a 2 × 2 trans-
formation in in-homogeneous coordinates. Therefore, for
every line in one spectrum, there is a corresponding line
in the other spectrum with the same intensity values. We
identify two corresponding lines passing through the origin
in the Fourier Magnitude Spectra of the two views and use
them to define a new coordinate space – the αβ space – in
which the chosen lines form the axes of the coordinate sys-
tem. As we will see shortly, this helps us in reducing the
problem of finding the affine transformation to a simpler
problem of computing the anisotropic scale factors relating
the two transformed images. The coordinates of a point in
the new system are defined as follows. Let Lj

i be the ith line
in view j (Figure 1). To determine the location of a point
in the Fourier Magnitude Spectra space (uj , vj) in view j,
in the αβ space, we draw lines lj1 and lj2 parallel to Lj

1 and
Lj

2 respectively passing through (uj , vj). Let the distance
of (uj , vj) from Lj

1 along lj2 be αj and the distance from
Lj

2 along lj1 be βj . We represent the point (uj , vj) in the
Fourier Magnitude Spectra by (αj , βj) in αβ space.

Claim 2: In the αβ space, the views differ only by
anisotropic scale factors.

Proof Say we have (α1, β1), (0, r1) and (s1, 0) in the
first view and their corresponding points (α2, β2), (0, r2)
and (s2, 0) in the second view. (The actual values of r1, r2,
s1, and s2 are irrelevant) Ratios of lengths on parallel lines
are preserved in affine transformed views [5]. Therefore,

α1

s1
=

α2

s2
and

β1

r1
=
β2

r2

α1 = ψ1α
2 and β1 = ψ2β

2

[

α1

β1

]

=

[

ψ1α
2

ψ2β
2

]

(2)



(a) (b) (c) (d) (e) (f) (g)
Fig. 2. (a)(b):Images of two views of a brick texture related by an affine homography. (c)(d):Fourier Magnitude Spectra of
(a) and (b). (e)(f):Magnitude Spectra of (a) and (b) in αβ space (g): Image obtained on applying the computed homography
to (b)

Here, ψ1 and ψ2 are s1/s2 and r1/r2 respectively.
Therefore, by converting the coordinate system to the

αβ space, we obtain two spectra whose intensity values
are related by the unknown anisotropic scale factors ψ1 and
ψ2. If we can determine these scale factors, working back-
wards we can determine the transformation which relates
the Fourier Magnitude Spectra in the (u, v) space and hence
the transformation between the input images.

Determination of Scale Factors We convert anisotropic
scaling into translation by taking the logarithm on both sides
of Equation 2 to get

[

logα1

log β1

]

=

[

logα2

log β2

]

+

[

logψ1

logψ2

]

(3)

The translation component is
[

logψ1 logψ2

]

. It can be
recovered by looking for an impulse in the inverse Fourier
transform of the cross power spectrum of the Log αβ space
representations of the two images. To see this, consider two
images f1 and f2 related by a translation (x1, y1). There-
fore, f2(x, y) = f1(x − x1, y − y1) Their corresponding
Fourier Transforms are related as

F2(u, v) = e−j2π(ux1+vy1)F1(u, v)

Let F ∗

2 (·) be the conjugate of F2(·). Thus, their cross power
spectrum would be

F1(u, v)F
∗

2 (u, v)

|F1(u, v)F2(u, v)|
= ej2π(ux1+vy1)

By taking the inverse Fourier Transform of the cross
power spectrum, we get an impulse at (x1, y1), i.e. we have
a function which is approximately zero everywhere expect
at (x1, y1). The antilog of the coordinates of the location
of the impulse gives the non-linear scale factors ψ1 and ψ2.
This method of determining ψ1 and ψ2 is accurate and tol-
erant to high levels of noise.

Computation of the Transformation Once the non-linear
scale factors have been identified, we get corresponding points
in αβ space. Converting them to uv space results in dense
correspondence in the Fourier Magnitude Spectra. From

them we can obtain the upper leftmost 2×2 minor of H−1 in
a linear least squares manner using the DLT algorithm [5].
This transformation is then applied to the second image to
get the transformed image gt(x, y). Now all that remains
unknown is the translation component. As described earlier,
the translation relating two images can be obtained from the
location of the impulse in the inverse Fourier Transform of
the Cross Power Spectrum. Using g1(x, y) and gt(x, y), we
obtain the translation component as well. The affine homog-
raphy H relating the original images g1(x, y) and g2(x, y)
is thus obtained.

Implementation Details From Equation 1, we can see
that every line in the Fourier Magnitude Spectrum gets trans-
formed to another line in the other view. The intensity value
of the corresponding points on the two lines remains the
same. However, in practice, due to noise, this might not
be the case. Hence, identification of corresponding lines in
two Fourier Magnitude Spectra is not trivial when the spec-
tra have many dominant lines. We overcome this problem
by taking the two most dominant lines in the first view and
the five most dominant lines in the second. Even with high
levels of noise, two of these five lines correspond to the two
lines chosen in the first view. Therefore, we try all permuta-
tions of the five lines in the second view taken two at a time
as possible line correspondences, thus resulting in a total of
20 permutations. These 20 ‘correspondences’ would gen-
erate 20 homographies, which are used to map the second
view into 20 new views. We compute the cross correlation
of each of these new views with the first view and declare
that transformation as the result for which corresponding
cross correlation value is highest.

Computation of Projective Transformation In [9], the
computed affine approximation of the transformation [8] is
used as an initial estimate in a non-linear optimization pro-
cedure to compute the projective components of the trans-
formation. Our technique produces a far more robust esti-
mate of the affine transformation (See comparison of recog-
nition accuracies on a Brodatz texture dataset in the next
Section) and hence provides as good if not better initial es-
timates for an identical non-linear optimization procedure to



(a) (b) (c)
Fig. 3. (a),(b):Images of a painting taken from two different view points (c) Image obtained on applying the computed affine
transformation to (b). Notice that the rectangular door and wall tiles appear slanted in (b), but not so in (c).

compute the complete projective transformation. We refer
the reader to [9] for details of this step. Our technique can
thus provide a sounder basis for recovery of the complete
transformation than previous methods.

4. APPLICATIONS

4.1. Homography Calculation

We now present the results of two of the many experiments
we conducted to evaluate the efficacy of our approach for
homography computation described in 3. Figures 2(a) and
(b) show two views of a brick wall texture related by an
affine transform. Their Fourier Magnitude Spectra are shown
in Figures 2(c) and (d). Using two corresponding dominant
lines of these spectra the coordinate axes are changed to re-
sult in Figures 2(e) and (f). The anisotropic scale factors are
then determined from the inverse Fourier Transform of the
cross power spectrum of the log images constructed from
these images. Point correspondences were then obtained
using these scale factors and the affine transformation relat-
ing the two views was determined as described in Section 3.
Applying the transformation to the second view results in
the view shown in Figure 2(g).

Figures 3(a) and (b) show two views of a painting taken
from two different viewpoints and hence related by a projec-
tive transformation. We calculate the affine approximation
of this projective transformation and apply it to the second
view to obtain Figure 3(c). Notice that the rectangular door
and wall tiles appear slanted in (b). This ‘distortion’ does
not appear in (a) and (c). An affine approximation of the
projective homography seems sufficient in this case.

4.2. Registration and Mosaicing

Image registration involves identifying the relative orienta-
tions of two or more overlapping images of the same scene.

Most of the direct image registration [11] algorithms are re-
stricted to handling similarity transformations which though
useful, prove to be insufficient in many real life situations
wherein the image-to-image transformations are more com-
plex. The technique that we have designed can handle a
more general class of transformations between views mak-
ing it more applicable to solving the problem of registration.

Once registration has been achieved, we can perform
automatic image mosaicing. The homography between any
two consecutive images of the given image sequence is com-
puted and then used to align and stitch the images together
to obtain a large field of view image. Mosaicing deals with
obtaining an image with a large field of view by aligning
and stitching a sequence of images with a small field of view
and considerable overlap. The images in Figure 4(a)and (b)
were mosaiced to get the large field of view image shown in
Figure 4(c). Note that the two input images are related by a
general homography.

4.3. Planar Scene Recognition

The problem of planar scene recognition can be stated as
follows : Given the reference view of various planar scenes
and a test (distorted) view of one of them, identify the cor-
rect reference scene. To compare the efficacy of our tech-
nique of computing the transformation and hence perform
recognition, with the previous work that is closest to ours [8,
9], we tested on a dataset of 200 views of 5 Brodatz tex-
tures. The views are generated synthetically by applying
general projective transformations to the Brodatz textures.
Figure 5 shows some of the images used as input in our
recognition experiment. For each texture class there is one
representative sample. Given a texture view to be classified,
we compute the transformations between the test view and
each of the reference views using both methods. For each
computed transformation, we calculate a confidence value



(a) (b) (c)

Fig. 4. (a): Input image -1, (b):Input image -2, (c): Mosaiced image

– the cross correlation of the corresponding reference view
and the test view transformed using the computed transfor-
mation. The test view is labeled as belonging to the class of
the reference view for which the confidence value is highest.
Recognition accuracies using the two techniques is given in
Table 1. Clearly our technique provides better recognition
accuracies.

(a) (b) (c) (d) (e)
Fig. 5. Examples of Brodatz textures used as input for the
recognition experiment

Texture 1 2 3 4 5
Method [8] 75 70 72.5 75 65

This 100 100 97.5 100 97.5

Table 1. Recognition accuracies (%) obtained for various
Brodatz textures using the technique in [8] and this paper

5. CONCLUSIONS

This paper presents a novel technique for determining the
affine transform relating two views of a planar scene using
the geometric information encoded in the multiple views.
Unlike most of the previously reported geometric approaches
that usually use entities such as corresponding points, lines
and other contours, our method uses the tonal information
present in them. It does not need correspondence across
views. Furthermore, our technique is linear and hence more
robust than earlier tonal based methods which are non-linear.
The computed affine transformation can then be used as an

initial estimate in a non-linear optimization procedure to re-
cover the complete projective transformation. Our proposed
scheme is found to be effective for rectification, registration
and recognition.
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