REMOTEVIS: REMOTE VISUALIZATION OF MASSIVE VIRTUAL
ENVIRONMENTS

Soumyagjit Deb

P. J. Narayanan

Centre for Visual Information Technology
International Institute of Information Technology
Gachibowli, Hyderabad 500019
{sdeb@students,pjn@}iiit.net

ABSTRACT

Graphics models for virtual environments are in-

creasingly getting massive and require a large amount

of memory to store and high end graphics capabil-
ities to render. It may not be possible or desirable
to store the entire model in the station where it
will be rendered, especially for environments that
change. Such virtual models could be stored on
a server and streamed to remote clients on de-
mand. In this paper, we present the design and
implementation of a client-server system to render
large virtual environments. Our system can pro-
vide the best visualization quality for a wide range
in connection bandwidth and latency and the ren-
dering capacity of the client. The system uses
a visibility-based geometry representation so that
little invisible geometry is sent to the client. Incre-
mental updating and client-side prediction of user
motion optimize the communication requiremnts
for a given client. We present results of the study
conducted on a representative range of the rele-
vant parameters in this paper.

1. INTRODUCTION

The last decade has seen a huge growth in the pop-
ularity of 3D graphics applications. There have
been many attempts at creating collaborative vir-
tual environments over the web. However most
of them have been unsuccesful. Large models are
bulky to store and require significant graphics ca-
pabilities to render. There are, however, no ef-
fective means for streaming virtual environments

over the network. Transmission of the entire vir-
tual environments is impractical. If a streaming
approach is utilized, the virtual environment may
also change with time without affecting the walk-
through experience of the viewer. Hence stream-
ing allows dynamic virtual worlds to be displayed
in virtual reality applications. The streaming mech-
anism, thus, should adapt to the client’s capabil-
ities and the varying network conditions of the
connection between the server and the client. A
streaming system will find wide applications in
distributed virtual reality applications and tele-
immersion.

A few web-based visualization systems have
been built earlier. VRML was developed for re-
mote interaction. It has been used for stream-
ing successfully with compression of models ear-
lier [1, 2]. Geometry compression [5] can reduce
the size of the data to be transmitted. Some web-
based visualization approaches use Java to gener-
ate VRML files dynamically [9] based on user in-
put. The Silicon Graphics VisServer is an attempt
at rendering an OpenGL application on remote
clients. Continuous level of detail algorithms have
been tried on the server side [3]. Schuneider and
Martin describe a framework which adapts to the
client characteristics including network bandwidth
and the client’s graphics capabilities [7]. They
concentrate on the transmission of individual mod-

els rather than complete virtual environments. Teler [8]

describes a remote rendering system utilizing path
prediction and bandwidth based level of detail re-
duction.

2. OVERVIEW

A graphics streaming system must provide the best
quality of visualization that the capabilities of the
client and the available network bandwidth can af-

ford at a consistent frame-rate. The models streamed

must improve and match the capability of the client.
The client must not freeze due to connection la-
tency. This necessitates predicting the viewer mo-
tion and fetching data from the server in advance
so that the client side motion is smooth. Lastly
the server must be able to support clients with
limited resources in terms of graphics capability,
memory resources and the CPU power.

2.1. Requirements

The RemoteVIS system architecture envisages a
server connected to multiple clients. The client
and server module are joined together in a com-
mon philosophy of optimizing the navigation ex-
perience in the virtual environment at the client
side. We enumerate the requirements a remote
rendering system must satisfy for a good user ex-
perience.

o High Quality Rendering at Interactive Frame
Rates: The data streamed to the client must
match with the client’s graphics capabilities
and network bandwidth.

o Freeze-Free Rendering: To avoid pauses and
jerks in motion, the client must request suffi-
cient data to cover not only the current view
but also the possible views in the immediate
future. The viewers’ path of motion must be
predicted based on the past and data may be
requested ahead of time.

e Latency Immunity: A poor latency can re-
sult in delays and freezes, reducing the in-
teractive viewer experience. The solution to
this problem is to predict for a higher period
of time in the future.

e Independence of Server and Client Module:
The system must allow clients to use differ-
ent algorithms for rendering based on its de-
clared capabilities and motion prediction.

2.2. The Client and Server Modules

The server must serve each client without delay.
It should also serve as many clients as possible si-
multaneously. Each client request should be trans-
lated into an optimized representation for the cur-
rent client state based on the parameters supplied
to it which is then streamed to the client. The
server must also keep track of the data being sent
to the client to avoid duplicating any of it in the
future. Different clients may use different policies
internally and the server should be able to support
them.

The clients may have varying capacities with
respect to available memory, graphics acceleration,
and speed of the CPU. The network bandwidth
and latency between the server module and the
client may also vary. These are the crucial factors
in deciding the size and quality of the models to
be transmitted to the client. The navigation speed
of the viewer is another factor that may be used
to decide the overall rendering quality.

2.3. Establishing the Client Parameters

The client first indicates its network speed, ren-
dering capabilities, etc. to the server at the start
of the connection. The client and server agree
on a range of algorithms and parameters for ren-
dering. The server then starts streaming data in
the appropriate format optimized for the particu-
lar client. The client parameters can be updated
at arbitrary intervals by the client provided the
server acknowledges the change.

2.4. Implementation of the System

The RemoteVIS system keeps the above factors
in mind and uses a visibility culling algorithm to
reduce the amount of data streamed to the client
by a large amount. Some important features of
the current system are given below.

e The clients are classified based upon the avail-
able network bandwidth and graphics capa-
bilities.

e The client requests models that cover the
current position as well as its neighborhood

Server

culls out parts of the virtual environment that are
invisible to the user. It must also be able to han-
dle local movement without visual anomalies. A
level of detail algorithm may also be employed in
addition to visibility culling.

Client
Tracker

Clien

Network
Module

Network
Module

Speed
based
(Optimizer

Frustum
Culler

3.1. Visible Space Models (VSM)

Image Visibility

b o Our system uses Visible Space Models as the ge-
renderer Predictor {=—— Renderer

I ometry based streaming representation [6]. A vis-
e T ibility limited, partial model is taken as the basic
unit of the virtual environment representation. It

ul .
has the following features.

Output

e The model has an origin in the 3D global
virtual space, a preferred direction of orien-
Figure 1: Architecture of the Remote Rendering tation, and a field of view.

System) o _
e It contains a description of the environment

visible from its origin in the given direction,

limited by the field of view.
on all the four sides of it. lmited Dy the lield ol view

The visibility function eliminates not only the ob-
jects lying outside the viewing cone (or pyramid/frustum)
but also the objects inside the viewing cone that
are occluded by closer objects. The visible portions

e The client keeps predicted data which de-
pends on the latency of the connection be-
tween the client and server.

The system possesses three network band-
width levels which correspond to typical broad-
band, ISDN and modem data rates. There
are three levels of client capabilities which
correspond to high-end, midrange and low-
end clients.

The server uses an object based Visible Space
Model (VSM) representation for geometry
based representation.

The system dynamically scales textures in
based on the client parameters.

The system uses a simple compression scheme
for the model data to reduce the network
traffic.

3. VISIBILITY BASED
REPRESENTATION

For reducing the amount of data to be streamed, it
is necessary to apply an algorithm that effectively

of the virtual environment may be determined ei-
ther using a polygon based approach or using an
object-based approach. The system utilizes object
based an object based VSM approach for visibility
based culling.

3.2. Rendering Using VSMs

In general, multiple overlapping VSMs are required
to achieve hole free rendering [6]. However as a
special case, for object based VSMs, only one is
sufficient. In addition an object-based represen-
tation ensures that each object is sent only once
by caching it on the client, Client side caching
can hold on to the objects easily in case they are
needed, perhaps due to the viewer retracing the
path. The system also utilizes multiple levels of
detail of the visible objects based upon the dis-
tance of the viewer from the object and also the
client capabilities. The system also reduces the
LOD in case the viewer is moving with high speed.
LOD can be integrated seamlessly into a system
utilizing object based VSM representations.

3.3. Handling Local Motion

For client motion in the vicinity of a transmitted
VSM, no more data must be requested from the
server. A single transmitted block of data must
be able to handle local motion around a particular
VSM viewpoint. The object-based VSMs, there-
fore, contains all objects visible from a range of
positions instead of one. Since there is consid-
erable overlap between the views from proximate
locations, additional data transmitted is generally
small as duplication of objects is avoided.

3.4. Texture Optimizer

All textures must be handled in real-time to send
the optimal quality textures to the client based
upon its connection profile. The size and quality
of textures must be optimized. The system utilizes
JPEG compression of textures to reduce the band-
width required for transmission and scales the tex-
tures based upon the connection class of the client.

3.5. Compression of Transmitted Data

The data transmitted between the client and the
server must be compressed optimally to achieve
best performance from the system. The vertex and
polygon data are compressed using ZLIB. The tex-
tures need not be compressed as they are already
in JPEG format. There are various schemes for
vertex data compression based on entropy encod-
ing. However such encoding schemes are expensive
to perform and unsuitable for real-time computa-
tion.

4. CLIENT SIDE PREDICTION OF
MOTION

For smooth, jerk-less motion in the virtual envi-
ronment and a seamless, hole-free display, predic-
tion of viewer motion is extremely important. A
couple of factors are crucial for this. Models avail-
able at the client side must cover the current user
location and its immediate neighborhood. The
system must also be able to tell where the viewer
is going to be in the future.

4.1. Prediction in Virtual Environments

Prediction of motion involves guessing the position
of the viewer and requesting the server for data
that will be needed in the future. The system cur-
rently makes a few simplifying assumptions. The
motion of the viewer is also assumed to be decom-
posed into components that are either rotational
motion about a point or translational in a fixed
direction. Using these assumptions and the posi-
tion of the viewer at earlier instances of time, the
motion of the viewer is predicted using standard
equations of motion.

4.2. Fighting Latency using Prediction

Once the position of the viewer is predicted, the
client must request data from the server for future
instances of time. Our system requires that the
client possess data for the next [seconds, where
[depends on the bandwidth and the latency be-
tween the server and client. If ¢ is the round-trip
time between the server and the client, the client
must predict correctly for at least 2¢ amount of
time in the future so that latency would not hurt
the performance of the renderer on the client side.
This would ensure the client would have enough
data to avoid jerks and jitters even if the data
transferred from the server takes more than t sec-
onds to arrive at the client. Our system utilizes
only client side prediction. The client may then
utilize any algorithm it wishes for prediction. In
such a case, the client may optimize its prediction
algorithm accurately to match its connection pa-
rameters. They client can then request data when-
ever required in an optimal manner to provide the
best navigation experience.

5. CLIENT CACHING

When a client retraces a point in the VE, the data
once transmitted need not be retransmitted if it
can be cached on the client side. The server needs
to retransmit only in cases when higher quality
data is required. The server maintains a list of
objects that have been already transmitted to the
client and their level of detail.

5.1. Cache Replacement

In the ideal case, we may assume that the client
has infinite cache capacity. However, if the virtual
environment is extremely large, it is incorrect to
assume that the client will possess a buffer large
enough to store all objects in its cache. In such a
case, the client must discard some of the models
that are present in the cache periodically when-
ever the cache gets filled. All objects that are
within a fixed threshold from the current view-
point are never deleted from the buffer. This is
done so that objects in the immediate vicinity of
the viewpoint, which may potentially become vis-
ible soon if the viewer rotates or moves are never
expunged. The objects with the highest frequency
of display should also not be expunged. An LRU
algorithm selects the objects which appeared the
least recently in the viewport as the objects to be
expunged from the cache. Each object is times-
tamped whenever it is rendered on the client. The
client notifies the server that an object was re-
moved from its cache so that the server may up-
date its Client Tracker module appropriately.

6. RESULTS

The prototype system developed is based Win-
dows 2000 and utilizes the OpenGL libraries for
rendering and Winsock 2 libraries for network in-
teraction. The client and server machines were
connected on an 100BaseT LAN. The lower band-
width conditions were simulated over this network.
The model used consisted of 163557 polygons and
84339 vertices. The total uncompressed size of the
model was around 7 megabytes. The textures in
uncompressed form were around 2.25 megabytes.
After JPEG compression optimizing quality, the
total size of the textures was around 200 kB. A
fixed walkthrough path was created and this same
path was used for measuring data and frame rates
for homogeneity.

6.1. Performance over varying Data Rates

he amount of data transferred during a walkthrough
which lasts for approximately forty seconds is shown
in Fig. 2. Other than the case of maximum band-

T T
Max Bandwidth
High Bandwidth
Low Bandwidth
350 [

300 |-
250 |

200 |

Data Transferred (KB)

150 |,

100 -

50

L L " n L n !
0 5 10 15 20 25 30 35 40
Time Elapsed (sec)

Figure 2: Data Transfer during Walkthrough

width, there is progressive refinement of the mod-
els and the bandwidth is utilized even when the
The amount of prediction to be
performed is directly dependent upon the latency
of the system. The latency and speed of a client
are independent of each other. In case of a high
latency connection,a large amount of data will ar-
rive at the client after substantial intervals.

viewer is idle.

6.2. Walkthrough Performance and Frame
Rates

Once data has been received by the client, the per-
formance of walkthrough is solely dependent on
the graphics capabilities of the client. The average
frame rates are shown in Fig. 3. For comparison,
the frame rates achieved by normal brute force
rendering methods (View Frustum Culling only)
are outlined in Fig. ??. It is interesting to note
that the reduction in primitive count does not af-
fect the frame rate. Only at the lowest detail, the
frame-rate gets a significant boost due to a sig-
nificantly lower polygon count. This is primarily
because of the inherent visibility limiting nature
of VSMs.

50

T T T T T T
Maximum Detail Mesh (163557 polygons, 84339 vertices)

High Detail Mesh (82884 polygons, 42211 vertices)
45 + Low Detail Mesh (18337 polygons, 11453 vertices)

40 -
35 -
30 -
25+

20

Frames per Second

n L L L L L s L
0 5 10 15 20 25 30 35 40 45
Time Elapsed (sec)

Figure 3: Walkthrough Frame-Rates

7. CONCLUSIONS AND FUTURE
WORK

We presented a remote rendering system that adapts
to the client characteristics and provides the best
possible walkthrough experience to the client. We
presented the requirements and design of a generic
remote rendering system. We found that the most
important factors in the design of an efficient re-
mote renderer is the way client prediction is han-
dled, optimization of the model data based upon
client capabilities and reduction of detail based
upon the speed of the viewer. We developed strate-
gies for freeze-free rendering to avoid jerks in mo-
tion due to network lag. We implemented a pro-
totype system utilizing Visible Space Models in-
corporating these principles and presented prelim-
inary results based upon the performance of the
said system. The results were presented on a large
model under different conditions.

REFERENCES

[1] Suzana Djurcilov and Alex Pang. Visualization
products on-demand through the web. In Don
Brutzman, Maureen Stone, and Mike Macedo-
nia, editors, VRML 98: Third Symposium on
the Virtual Reality Modeling Language, New
York City, NY, 1998. ACM Press.

[2] R. Earnshaw and Vince Jr. The Internet in
3D Information, Images and Interaction. Aca-
demic Press, USA, 1997.

[3] G. Hesina and D. Schmalstieg. A network ar-
chitecture for remote rendering. Proceedings of
Second International Workshop on Distributed
Interactive Simulation and Real-Time Applica-

tions,, pages 88-91, 1998.

[4] Eung-Seok Lee and Hyeong-Seok Ko. Vertex
data compression for triangle meshes. FEuro-
graphics Workshop 2000, 2000.

[6] J. Li. Progressive Compression of 3D graph-
ics. Ph.D Dissertaion, University of Southern
California, 1998.

[6] P. J. Narayanan. Visible Space Models: 23-
D Representations for Large Virtual Environ-
ments. In International Conference on Vi-
sual Computing (ICVC99), pages 154-161, Feb
1999.

[7] B.O. Schneider and I. M. Martin. An adap-
tive framework for 3D graphics over networks.
Computers and Graphics, 1999.

[8] Eyal Teler and Dani Lischinski. Streaming of
Complex 3D Scenes for Remote Walkthroughs.
EuroGraphics 2001, 2001.

[9] J.C. Trapp and Pagendarm. A Prototype for
a WWW-based Visualization Service. FEuro-
graphics Workshop, Visualization in Scientific
Computing, 1997.

