
Tools for Developing OCRs for Indian Scripts

M N S S K Pavan Kumar, S S Ravikiran, Abhishek Nayani, C V Jawahar, P J Narayanan
Centre for Visual Information Technology

International Institute of Information Technology
Gachibowli, Hyderabad 500019, INDIA

Abstract

Development of OCRs for Indian script is an active area of
activity today. Indian scripts present great challenges to an
OCR designer due to the large number of letters in the al-
phabet, the sophisticated ways in which they combine, and
the complicated graphemes they result in. The problem is
compounded by the unstructured manner in which popu-
lar fonts are designed. There is a lot of common structure
in the different Indian scripts. In this paper, we argue that
a number of automatic and semi-automatic tools can ease
the development of recognizers for new font styles and new
scripts. We discuss briefly three such tools we developed
and show how they have helped build new OCRs. An inte-
grated approach to the design of OCRs for all Indian scripts
has great benefits. We are building OCRs for all Indian lan-
guages following this approach as part of a system to pro-
vide tools to create content in them.

1. Introduction
A lot of activity is taking place today on the development of
OCRs for the scripts of Indian languages [1, 2, 3, 4, 5, 6].
Electronic representation and access of documents and
other material in Indian languages have been lagging be-
hind for many years. The recent wide adoption of the com-
puter and the channels provided by Information Technology
in India has resulted in a big spurt in the use of electronic
representation, storage, and access of information in Indian
languages. The demand for content in the local languages is
ballooning as Information Technology reaches beyond the
English-speaking sections of the populace. This trend is
likely to continue in a populous country like India. A sim-
ilar trend is expected in other developing nations also. An
Optical Character Reader is a critical tool in creating elec-
tronic content in Indian languages as a rich tradition of lit-
erature and a vibrant publishing industry have existed in all
of them for a long time.

Indian languages and the scripts used to write them pose
great challenges to an OCR designer. Four factors make
the task considerably harder than the design of an OCR for
the Roman script: (a) the larger number of letters in the al-

phabet, the typical number being 50, (b) richer structure of
the basic unit in the language as the combination of upto 3
consonants and 1 vowel forms the basic unit, (c) the vari-
ations in the graphical form of the different combinations
even within the same script, and (d) non-adherence to any
standard structure while designing the fonts.

All Indian languages have a common alphabet derived
from the Sanskrit alphabet. The scripts used to express the
alphabet differ widely from language to language, however.
The code for electronic representation of Indian languages,
called Indian Standard Code for Information Interchange
or ISCII, exploits this feature. Thus, ISCII is a compact
and script-independent code for all Indian languages. This
design of ISCII has been adopted by the Unicode repre-
sentation of Indian languages in an expanded form. ISCII
representation is expressed in different scripts using script-
dependent drivers for each language. This is a feature that
can reduce the complexity of designing an OCR for a new
script by bootstrapping from an existing OCR system. This
aspect has not been explicitly recognized by the designers
of OCRs in Indian scripts.

We are developing a system containing OCRs for all
major Indian scripts. The goals of the overall project is
to provide electronic content in all Indian languages. A
unified approach to the individual tools such as OCRs
for all languages is necessary for this. Thus, our design
naturally provides a framework to exploit the common-
ality as well as differences between different Indian lan-
guages and their scripts. Most other efforts towards build-
ing Indian language OCRs have focussed on single lan-
guage/script, making it difficult to recognize inter-lingual
structures. [7, 8, 9, 10, 11, 12]

In this paper, we argue that automatic and semi-
automatic tools can aid the design of an OCR for a new
script or a new font family, given an OCR for another script
or font family. We built a number of tools for the gener-
ation of extensive test data, to analyze the effectiveness of
an existing segmentation scheme, to judge the classifica-
tion accuracy of an OCR, etc. The tools perform extensive
analysis on the graphical form and the ground truth in com-
bination. The results are presented in a form that makes it

1



easy for the human designer to adjust its various parameters.
This iterative procedure for OCR design has helped us build
OCRs tuned for new font sizes and new scripts considerably
quickly. We present two case studies here.

Section 2 summarizes the features of Indian languages
and scripts that have bearings on OCR design for them.
Section 3 describes two of the tools we developed for the
bootstrapped design of OCRs. Section 4 presents the case
studies of designing an OCR for a new font style in De-
vanagari and for a new script Telugu, starting with an OCR
for a specific Devanagari script. Section 5 presents some
concluding remarks.

2. Features of Indian Languages and
Scripts

We look at some of the features of Indian languages and the
scripts used to express them that can affect the way OCRs
are designed for them.

Common Alphabet: All Indian languages have essen-
tially the same alphabet derived from the Sanskrit alpha-
bet. This common alphabet contains 33 consonants and 15
vowels in common practice. Additional 3-4 consonants and
2-3 vowels are used in specific languages or in the classical
forms of others. This difference is not very significant in
practice. Individual consonants and vowels form the basic
letters of the alphabet. The most notable exception to the
common alphabet is the southern language of Tamil, which
uses about 12 fewer consonants. However, the structure is
not too different in Tamil also, as the change can be mod-
elled as dropping some of the consonants from the master
list.

The now standard Indian Standard Code for Information
Interchange (ISCII) takes explicit cognizance of the com-
monality in the alphabet. The same design has also been
adopted by Unicode for Indian languages.

Basic Character Unit: Akshara Indian languages also
have a more sophisticated notion of a character unit orak-
shara that forms the fundamental linguistic unit, akin to a
character in English. An akshara consists of 0, 1, 2, or 3
consonants and a vowel. Words are made up of one or more
aksharas. Each akshara can be pronounced independently
as the languages are completely phonetic. Aksharas with
more than one consonants are calledsamyuktaksharas or
combo-characters. The last of the consonants is the main
one in a samyuktakshara.

The ISCII standard recognizes and encodes this structure
of an akshara. Thus, the basic representational unit in ISCII
can range in length from 1 to 6 bytes. A string of bytes of
encoded text in ISCII can easily be split into its constituent
aksharas uniquely.

Different Graphemes The commonality in the alphabet
does not extend the graphic forms used to express them
in print. Each language uses different scripts consisting
of dissimilar graphemes for printing. Thus, printed mat-
ter in other scripts are inaccessible to readers of one script.
There are 10-12 major scripts in India. The Devanagari
script is the widest used one, being used to write Hindi
(the most spoken language), Marathi, Konkani, and Nepali,
the language of the neighbouring Nepal. Different scripts
use different philosophies for the individual graphemes and
their combinations. Some have a head-line orshirorekha
that persists for a whole word. Others have non-touching
graphemes. The grapheme of one of the consonants is usu-
ally at the heart of the printed akshara. The vowel appears
as amatraor vowel modifier. These can appear to the left,
right, above or below it or in combinations. The support-
ing consonants of a samyuktashara also appear as modifier
graphemes to the left, right, above, or below of the main
one. These modifiers could be truncated or scaled down
forms of the basic consonant, but could also be completely
different. They may touch each other or the main consonant
in some cases or may be separate. These rules are not con-
sistent even within a script and certainly not across scripts.

The script and font dependent aspects of a language are
pushed to a language driver responsible for printing ISCII
strings in a specific script and font. Different scripts use dif-
ferent drivers. Transliterating a block of text from one lan-
guage to another involves sending it through another driver.

Unstructured Font Design Different fonts have been de-
signed for each Indian script in the past few years. The fonts
are built from glyphs and follow the graphical structure of
each script, which is different for different languages. It
is not possible to use a consistent set of rules for this step
for all scripts. Unfortunately, no conventions have been fol-
lowed in defining the glyphs for different font families of
the same script, which is quite possible. To increase the
confusion, the computer fonts have been defined for specific
purposes (for instance, each electronic newspaper defines
its own font for its electronic site). They do not come with
converters from ISCII to their glyph set. Since the computer
usage in local languages is abysmally low, the standards en-
coded in ISCII have not been adopted widely enough by the
different players such as the individual newspapers.

2.1. OCR Design for Indian Scripts
Machine reading of printed or hand-written characters
through an OCR has to map the glyphs as it appears on
paper to the component graphemes and ultimately to ak-
sharas represented in ISCII. The above factors make design
of OCRs for Indian scripts tedious and manual effort inten-
sive. Much of the work done for one font family has to be
repeated for another of the same script. Sometimes, many

2



changes have to be made for a font of larger or smaller point
size within the same family. It would be advantageous to
reuse the work done for one script when designing an OCR
for another.

An example will illustrate this point. The aksharatri
is composed of the consonantsta , ra and the vowele.
The combination ofta andra in the Devanagari script as-
sumes a form that is totally different from either of them. In
Telugu and Malayalam scripts, a modifier-grapheme corre-
sponding tora appears to the left of the grapheme forta .
The matra for the vowele in Devanagari appears on the left
of the grapheme of the consonant, in Telugu above it, and
in Malayalam to the right of it!

It must be noted that human readers have no difficulty
in reading a complicated expression of such a rich alpha-
bet structure even when multiple scripts are mixed. Such
mixing is quite common in printing, in India.

3. Bootstrapping Tools for OCRs
We have embarked on a project to produce processing re-
sources in multiple Indian languages. The goal of the
project are to create tools for building a repository of elec-
tronic documents with proper indexing in all major Indian
languages. Such resources are not available today partly
because the computer processing in these languages are not
very popular. English dominates the network connected and
computer aware world in India, although the population that
is literate in English is an extremely small fraction.

A critical component in our project is a reliable OCR
system in the languages of interest. The OCRs need to be
font size and style independent to be effective on a wide
range of documents. This task necessitates the reuse of as
much of the work done for one script and one font to build
OCRs for other scripts and fonts. We believe automatic and
semi-automatic tools can make the task of building a new
OCR easier.

Development of any OCR system involves 5 major
stages: data collection, segmentation, feature selection,
training and testing, and postprocessing. Internal repre-
sentation formats, display technologies, font conversion,
etc., are also crucial for building a complete working sys-
tem. Each of these stages involve a lot of font-dependent,
language-dependent parameters, especially in Indian lan-
guages. The design of completely generalized procedures to
solve these problems may not be possible. We look at some
of the problems now and discuss how appropriate tools can
help.

3.1. Analysis of Script Characteristics
A detailed analysis of the characteristics of the script is the
first step in the design of an OCR for a new font or script.
This is tied to the script segmentation module. The results

of the analysis will be used for data collection, training, test-
ing and the final OCR system. Script analysis is difficult in
Indian languages as explained in Section 2. Script analysis
contains two major steps. The first is the selection of the
segmentation algorithm and its parameters for accurate seg-
mentation of the characters. The second is the construction
of the required mapping tables between labels, glyphs and
aksharas. We look at these steps now. The relationships be-
tween different representations of the data from ISCII to the
image and back are given in Figure 3.2.

The script analysis tool works on an electronically gen-
erated image of a document, containing each valid glyph of
the script written once. Since the alphabet is the same for
all Indian languages, all possible combinations of aksharas
expressed in ISCII can be the contents of this document.
However, half a million aksharas are possible (33 * 33 * 33
* 15), but most are improbable. The document containing
all aksharas of interest has to be prepared with manual su-
pervision. Another alternative is to pick the aksharas from
a representative corpus in the target language. Most of the
aksharas of interest are same in all languages. Therefore a
document in ISCII can serve most of the needs in all lan-
guages. This document can be rendered using a specific
language and font driver to get the electronic image for an-
alyzing the script features.

The segments generated by the segmentation need not be
the same as the glyphs in the font/script typically. For exam-
ple, segmentation of Devanagari script has the removal of
the shirorekha using the projection profile as the first step.
The aksharaki gets segmented into three segments, where
as, the akshara is made up of only two graphemes in De-
vanagari – the vowel-modifier fore and the consonantka .
Only these two glyphs are used by all the fonts. Thus, a
map between the segments generated by the segmentation
algorithm and the corresponding script components needs
to be built.

The script components or graphemes identified by the
above process needs to be mapped to the aksharas repre-
sented in ISCII. This requires another set of mapping ta-
bles. Thus, final text output in ISCII can be provided by the
combination of these mapping tables.

These tables are usually generated manually because of
the complexity of script features. However, it is an intensive
task since the number of possible grapheme combinations
could be very large.

We also have the ground truth in terms of font specific
glyphs since the image is electronically generated. Segmen-
tation could split each glyph into one or more segments that
are recognized by a classifier. It is necessary to label each
segment using a unique number. These segments may be
shared by other glyphs since they are based on the image
alone. For example, one of the segments the matra (vowel
modifier) for e splits into in Devanagari is a vertical line

3



ISCII

Segments

ISCII

Script Components

Glyphs

Image

Labels

Script Components

Language driver

Font driver

Printing and
Scanning Segmentation Classification

Label − Grapheme Mapping

Grapheme−ISCII mapping

Figure 1: The steps involved in going from ISCII to print
and back

which is also a segment in the matra for the longaa as well
as part of characters likega, Na . This makes the segment
to script-component mapping complex.

Effective tools can ease this task. For instance, the seg-
ments generated for a new glyph can be compared with al-
ready labelled segments using an appropriate image match-
ing scheme. Close ones can be shown to the user graphi-
cally for final selection. Tools do not automate this critical
process, but can ease the manual task and improve the speed
of building the segment to script component mapping.

3.2. Data Collection
Large amounts of data with sufficient variations are required
to train an OCR that should work under different conditions.
These variations can be on size, font type, scanning resolu-
tion, etc. All expected inputs to the system should be cov-
ered. Creating and collecting data for such conditions is a
time consuming and tiresome task.

The block diagram of the data collection tool is shown in
Figure 3.2. A document containing all graphemes present in
a script of a language is created electronically. This is pos-
sible by using a font driver. We refer the set of graphemes
as the standard grapheme set. A structured document con-
taining a predetermined (large) number of each grapheme
in a separate page can be generated as an image by ren-
dering the required characters using a language driver. For
example, a training page might contain 100 samples of each
character possible in Devanagari in a known sequence. This
can be generated for different font styles and sizes automat-
ically. These images can have unique labels (as a bar-code,
for instance) on the page for easy identification. The train-
ing documents so generated can be printed on a printer to
get hard-copy versions of the data set.

The printed data set can be scanned in batch mode un-
der the control of the tool to get images for training and

Generating
Training

Documents

Segmentation
Script / Font Specific

Character Set

Input Class List

Confirmation
Labelling

Scanning

Printing 
and

Component − Glyph Mapping
Glyph − ISCII Mapping

Dataset

Document Images

Language Driver

Figure 2: Block diagram of the data collection tool

testing. The scanning can be performed at different resolu-
tions to get more variations. These scanned pages are then
subjected to preprocessing algorithms like noise reduction,
skew correction and thresholding The preprinted label helps
identify the page. The ground truth for the page is then
available from tables created while generating and printing
these documents. Thus, we get a large number of data for
training or testing with realistic images and ground truth.

The last step performed by the data collector is the seg-
mentation of the image using the pre-decided segmentation
procedure for the script. The ground truth information helps
in labelling each segmented image with the class ID, the
font style and size, and the scanning resolution. The results
of the segmentation are displayed nicely for quick manual
inspection for verification. This is to guard against the pro-
gram missing an odd grapheme, throwing the ground truth
sequence into disarray.

The data collection tool, thus, creates labelled images of
all the graphemes in a script with the manual intervention
kept to a minimum of verifying the segmentation visually.

3.3. Segmentation Analysis and Feature Selec-
tion

Selection of the segmentation strategy, features, and classi-
fier are very important steps in the construction of an OCR.
Semi-automatic tools can play an important role in these
steps also. We built a segmentation analysis tool that helps
tune the segmentation parameters. The block diagram of
the tool is shown in Figure 3.3. This tool starts with ground
truthed pages such as the ones created by the Data Collec-
tion Tool. The images generated by the tool are segmented
using a segmentation procedure for another font of the same
script. The OCR for the other font is applied on the seg-
mented data. The results of classification are compared with
the ground truth data and the discrepancy or error is dis-
played graphically for manual verification. Based on the
results, the segmentation parameters can be tuned manually
and the OCR process can be repeated. If no segmentation
gives adequate results, manual verification might indicate
that the input class list, adopted from the font for which an
OCR is available, is inadequate for this font. A new class

4



Font Conversion

Language/Font Specific

Character Set
Segmentation

Backend OCR

Display
Error

Input Class List

Tuning
Segmentation

Parameters

Verification

Figure 3: Block diagram of the segmentation analysis tool

can be added manually to the list and the whole process can
be repeated.

A similar tool can be built to select the best features
semi-automatically also. The block diagram remains the
same with a difference that the efficacy of a set of features
is being tested and not the segmentation. The availability
of a large amount of ground truth data and the human in
the loop iterative tuning of the features used help select an
optimal set of features very rapidly.

3.4. Automatic Training and Testing Tool

The labelled output of the Data Collector can be used for
automatic training and testing. The parameters that can be
changed for batch mode training were the feature set, clas-
sifier, the percentages of the data set to be used for training
and testing, mixing the data set for training and testing etc.
The results reported in our ICDAR paper [2] for different
combinations of the above were generated using this tool.
The options for the feature set currently are PCAs, scaled
images, and discriminant vectors. The classifiers available
are SVM and kNN. The percentage of the samples to be
used for training could be varied from 20% to 100%. The
results of this tool include the accuracies obtained, the con-
fusion matrix, etc.

4. Results

The tools described above ease the process of building an
OCR for a new script or a new font. We present two experi-
ences as results.

A Devanagari OCR for a font called Naidunia, is ex-
tended to an OCR that can handle the same font of smaller
sizes. It was observed that the problem could not be solved
just by selecting shape independent features, as the segmen-
tation algorithm must be more robust for smaller size fonts,
as the edge errors and noise matter a lot in these cases. Also,
redesigning the OCR to handle both the fonts, was equally
easy with the help of the tools available.

Figure 4: Data collector at work. The image on the right is
a zoomed version of the selected region.

4.1 Extension of an OCR to a Smaller Font

The following section describes the extension of an existing
Devanagari OCR tuned for 24pt Naidunia font to handle a
size of 16pt of the same. The segmentation, feature selec-
tion, etc., are already available for the larger size. Most
of the problems for smaller size are in segmentation of the
components.

An electronically-generated image containing all glyphs
in 16pt is generated using a tool as described earlier from
such a document for the font. This is the initial document
for this script. The segmentation analysis tool is used on
this image with the OCR for the 24pt font used as the back-
end. The segmentation algorithm does not work perfectly
due to the problems introduced in smaller size print. Some
components start touching each other in the lower size. The
higher relative importance of noise makes segmentation less
effective. The segmentation analysis tool brings out such
discrepancies graphically to the user and allows for tun-
ing of the segmentation parameters. The segmentation al-
gorithm used for this purpose was a mixture of projection
profiling [12] and region growing, both of which have font
and size dependent parameters. The task of tuning the seg-
mentation for the new font size was completed in less than
30 minutes using the tool.

The training data for 16 point was generated using the
data collector tool. Training data for 137 components, with
100 samples for each component, was generated as de-
scribed earlier. Extraction of 13,700 components for train-
ing took just 3 hours of time using the data collector tool. A
screenshot of the tool is shown in figure 4.1.

The data collected was put to extensive testing using the
Training and Testing Tool described earlier using SVM and
kNN classifiers, and PCA, Discriminant Vectors, and im-
ages as features. The Support Vector Machine classifier
with scaled image as the feature worked best for the OCR.
The training time was approximately 30 minutes of system
time. This process of extension resulted in an OCR with
classification accuracy of 85% when the backend OCR had
an accuracy of 94%. Repeated use of classification analysis
with the ground truth improved the accuracy to 94% in a
couple of iterations. The segmentation thresholds and pa-

5



rameters were changed accordingly and the algorithm was
soon tuned to handle both the fonts with same efficiency.

4.2 Building a Telugu OCR

We used many of the tools described earlier to develop an
OCR for the Telugu script. All possible script-components
in Telugu were identified from the ISCII class list using a
language driver for ISCII. The segmentation analyzer was
run with the segmentation algorithm not removing the shi-
rorekha but using projection profiles. The number of dis-
joint classes was found using the segment analysis tool to
be around 420. The Data Collection tool was used to gen-
erate a large number of data, to the tune of 40000 compo-
nents. These were generated synthetically as documents,
printed, scanned and thresholded. The collected data is ver-
ified quickly for correctness with a graphical interface. The
data-collector facilitates renumbering of such samples and
removal of noisy ones. Once the necessary corrections are
made, the components are saved as images.

The data thus obtained was used for feature extraction,
training and testing. In the feature selection, dimensionality
reduction was performed using PCA analysis and the re-
duced dimension vectors were used as feature vectors. This
is necessary to ensure a reasonable speed for the classifier
as the number of classes is high. This set of features, with
a SVM classifier, gave an initial accuracy of 90%. Iter-
ation using the ground truthing tool improved it to about
97semi-automatic tools developed is demonstrated by the
drastic reduction in the data-collection, training and recog-
nition times. The construction of the OCR with the 33600
segments took 6 man hours to collect and about 90 minutes
for training.

5. Conclusions
In this paper, we presented the unique problems of design-
ing OCRs for Indian scripts. We also described the concept
and design of a couple of semi-automatic tools that will help
with the process, bootstrapping using existing OCRs or seg-
mentation algorithms wherever possible. The main goal of
designing such tools is to reduce the tedium of manual pro-
cesses and to ensure very good results. We presented the
Data Collection tool that can quickly create thousands of
sets of data with ground truth, the Segmentation Analysis
tool that enables quick tuning of the segmentation algorithm
to a new script given one for another, and the Feature Selec-
tion tool that makes it possible to tune the features used for
classification for a particular font or script given a set for
another. We also presented how we could create an OCR
for a different font size for Devanagari and for the Telugu
script using these tools. There are a number of other tools
that would ease the process of making OCRs in many lan-

guages, a task we are currently involved with. We are in the
process of generating some of them currently.

References

[1] “Document image processing of Indian scripts,”Spe-
cial Issue of Sadhana, 2002.

[2] C. V. Jawahar, M. N. S. S. K. Pavan Kumar and S. S.
Ravi Kiran, “A bilingual OCR for hindi-telugu docu-
ments and its applications,” inInternational Confer-
ence on Document Analysis and Recognition, 2003.

[3] C. V. Jawahar, M. N. S. S. K. Pavan Kumar, and S. S.
Ravi Kiran, “Recognition of Indian Language Charac-
ters using Support Vectors Machines,”Technical Re-
port TR-CVIT-22, International Institute of Informa-
tion Technology,Hyderabad, 2002.

[4] V. Bansal, “Integrating knowledge sources in devana-
gari text recognition,” doctoral thesis, IIT Kanpur,
Department of Computer Science and Engineering,
March 1999.

[5] V. Bansal and R.M.K.Sinha, “A devanagari OCR and
a brief overview of OCR research for Indian scripts,”

[6] “http://www.cedar.buffalo.edu/ilt/research.htm.”
Home Page Denanagari OCR.

[7] B. B. Chaudhuri and U. Pal, “An OCR system to read
two Indian language scripts: Bangla and devnagari
(hindi),” in Proc of ICDAR, pp. 1011–1015, 1997.

[8] A. Negi, Chakravarthy Bhagvathi, and B. Krishna,
“An OCR system for telugu,” inInt. Conf. Document
Analysis and Recognition (ICDAR), 2001.

[9] T.V.Ashwin and P.S.Sastry, “A font and size-
independent OCR system for printed kannada doc-
uments using support vector machines,”Sadhana,
vol. 27, pp. 35–58, February 2002.

[10] B.B.Chaudhuri, U.Pal, and M.Mitra, “Automatic
recognition of printed oriya script,”Sadhana, vol. 27,
pp. 23–34, February 2002.

[11] G. S. Lehal and C. Singh, “A gurmukhi script recogni-
tion system,” inProccedings of International Confer-
ence in Pattern Recognition,Barcelona,Spain, vol. 2,
pp. 557–560, 2000.

[12] U. Pal and B. B. Chaudhuri, “Automatic separation of
words in multi-lingual multi-script Indian document,”
in Proceedings of International Conference on Doc-
ument Analysis and Recognition (ICDAR), pp. 576–
583, 1997.

6


