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Abstract

Correspondence between pixelsis an important problem
in stereo vision. Several algorithms have been proposed to
carry out thistask in literature. Almost all of them employ
only gray-values. e show here that addition of primary or
secondary evidence maps can improve the correspondence
computation. However any particular combination is not
guaranteed to provide proper results in a general sitiua-
tion. What one needsis a mechanismto select the evidences
which are apropriate for a particular pair of images. We
present an algorithm for stereo correspondence that can
take advantage of different image features adaptively for
matching. A match measure combining different individual
measures computed from different featuresis used by our al-
gorithm. The advantages of each feature can be combined
in a single correspondence computation. e describe an
unsupervised scheme to compute the relevance of each fea-
ture to a particular situation, given a set of possibly useful
features. e present an implementation of the scheme using
dynamic programming for pixel-to-pixel correspondence.

1 Introduction

Many computervision algorithmsneedto identify the
projectionof commonscenestructureinto similar image
featuresn multiple images. Theseimagescould be taken
by differentcamerasimultaneoushasis the casein stereo
vision,wherethefocusis onrecoveringthegeometricstruc-
ture of objectsin the sceneby matchingup the common
scenestructurebetweenmages. Otherstructurefrom mo-
tion algorithmsmay move the cameraandattemptto match
the samescenepointsthroughthe sequencef imagesgen-
erated.Theproblemof stereocorrespondencis to identify
for eachpixel in the source(“left”) imagea matchingpixel
in thetarget(“right”) imagesuchthatthey bothareimages
of thesamephysicalpoint.

Differentmethodshave beenusedto computestereacor-
respondence.Someuse information from a single pixel
alone, while othersuse information from a small neigh-
bourhoodaroundthe pixel. Yet othersusefeaturesderived
from the imagefor matching. Variousimagefeaturesare
usedn theliterature suchasintensity edgestrengthcorner
strengthtexture,etc. Thechoicedepend®ssentiallyonthe
scene asdifferentfeatureswork well for differentpairsof

views. Areabasednatchingalgorithmsaregoodfor scenes
with good texture, edgebasedalgorithmsare good when
edgesare presentetc. Therehave beensomeattemptsto
formulatethe correspondencproblemin a generalstatisti-
cal framawork usingthe maximumlik elihoodestimategor
thepixels[4] or by estimatingthe Bayesiarpriorsfrom the
intensitydistribution[2]. Thesejn essencesomputeasim-
ple similarity measurdetweergray-valuesof pixelsin both
theimagesandfind the optimal matchesby imposingnewn
constraintsusingpenaltytermsfor the occludedpixels.

We presenta schemein this paperto adaptvely select
the combinationof featuresthat work bestfor a specific
pair of images.The selectionstartswith a supersebf fea-
turesthat could be relevant for matchingbetweenthe two
images.Thesecouldincludeintensityalongmultiple spec-
trums such as different colour bands,edge strength, tex-
turemeasuresgtc. The matchingmeasuresomputedrom
thesediversefeaturesare combined,with appropriateim-
portancesssignedo eachin theform of aweight,to yield
a singlemeasuref similarity or dissimilarity betweentwo
candidatepairs of pixels. The weight of a particularfea-
ture encodests relevanceor importancein matchingthe
pair of images. We also presenta schemefor estimating
the weightsfor the featuresusedwhich corvergesfaston
typicalimages.

Theimportanceof integratingmultiple featuremeasures
for stereccorrespondencleasbeenrecognizedn thelitera-
ture[4, 5, 6], but practicalimplementationsnvolving mul-
tiple featuresarerare.We introducedheframework of gen-
eralisedcorrelationto combinediversetypesof featuresn
a flexible manner[5]. It was quite successfuin combin-
ing multiple featuresundera correlationframework. The
importancef theindividual featuremeasuresvere,how-
ever, handcomputedwith noflexibility to adaptto a pair of
imagesautomatically We later deviseda techniqueto esti-
matetheimportance®f eachfeaturebasedn the siutation
underthe correlationframenork [6].

An adaptve, non-supervisedchemeo estimatetherel-
evancesof the featuremeasuresiseddependingon there-
sults of the matchingis also presentedn this paper We
presentthe resultsfrom implementingour schemeusing
dynamicprogramming.The methodologydiffers consider



ably from the existing dynamicprogrammingformulations
of stered7, 4, 3, 1] in thewayin whichit integratesmatch
measuresomputedusingheterogenouteatures.

The basic framework for combining multiple features
and estimatingtheir relevancesadaptvely is presentedn
Section2. A procedureo computethe importanceof the
featuresto solve a particularproblemis describedn sec-
tion 3. Resultsdirectedat demonstratinghe effectiveness
of the schemeare presentedn Section4. Concludingre-
marksanddirectionsfor future work are presentedn Sec-
tion 5.

2 TheApproach

At the heartof ary stereocorrespondencechemeis a
measuref similarity or dissimilaritybetweera pair of pix-
els,onebelongingto theleft imageandthe otherbelonging
to theright image. For two setof pixels{z1,...,zam} be-
longingto thefirst (left or source)imageand{y,...,y~}
belongingto the second(right or target) image, find the
mappingz; — y; suchthatz; andy; aresimilar pixels,
beingimagesof the samescenepoint. The mappingneed
notbe one-to-oneor onto. Somepointsin bothimagesmay
not have a correspondin@nein the otherdueto occlusion.
The similarity computationcan be carriedout basedon a
featurevectorcomputedor eachpixel. Correspondencis
typically computedusinga similarity measureS(z;, yx) or
a dissimilarity feature D (z;, yx). The matchingpoint for
x; is the pixel y;, thatmaximizesS or minimizesD overa
searchspace.lt is often possibleto limit the searchspace
for eachpixel basedon geometricor otherconstraints.For
instancethe epipolarconstraintimits the searchspacefor
eachpixelin theleft imageto aline in therightimage.The
orderingconstaintthe smoothnessonstraintgetc.,canalso
beusedto limit the searchspacen somesituations.

In this paper we constructfeature vectorsassociated
with eachpixel by stackingmeasureslerived from oneor
morefeaturego estimatehe similiarity or dissimilaritybe-
tweenpixelsof theleft andrightimages.The sumof abso-
lute or squaredlifferenceof the featurevectorcomponents
betweerthe pixels cansene asa dissimilarity measure It
is possibleto explicitly model occlusionsand associatea
costfor themin the objective function. In suchcasesthe
optimizationfor matchingis not donefor individual pixels,
but for a setof pixels,suchasa scanline of theleft image,
matchingwith a similar setin theright image. We usethe
squareof the magnitudeof thedifferencevectorasasimple
dissimilarity measuréor illustration in this paperthough
the schemecan be usedwith other similarity or dissimil-
iarty measuresWe alsoassumeparallelrectifiedviews are
being matched Jimiting the searchfor eachpixel j in the
left imageto the pixels of the samescanline in the right
image.

2.1 Multifeature Matching Measure

To combinethe effects of multiple featuresinto a sin-
gle dissimilarity measurewe form a featurevectorat each
pixel. The featurevector X; for the jth pixel is formed
by stackingmeasure$rom differentfeatureimages. Each
componenbf thefeaturevectorcontainsameasureelevant
for matchingderivedfrom animagefeature.Thus,thefirst
componentmay be the intensity in the red band, the sec-
ondin the greenband,the third may be the edgestrength,
etc. A feature relation matrix encodesghe relative impor-
tanceof eachfeaturein the matchingprocessasin [5]. The
combineddissimilarity measurébetweerpixel j in theleft
imageandpixel k in therightimagecanbe givenby

D(j,k) = [X; = Yi]"M[X; = Y4]

whereX; is the featurevectorfor pixel j in theleft image
andYy, is the featurevectorfor pixel k in theright image.
Thefeaturerelationmatrix M encodegherelationshipde-
tweendifferentfeaturemeasure®f the featurevector The
casewhenM is a diagonalmatrix is of specialinterest.In
thatcasegachentrym;; = w; representsheweightof the
feature: in the matchingprocessandgivesits relative im-
portance Thecorrespondenceomputatiorcanbetunedby
varyingthesevalues.Sincethe contribtution from a feature
cannotbe negative, w; > 0. The above dissimilarity mea-
surecanthenbewritten as

D(j,k) =Y wi(X} - Y})? (1)
where,xj- is the ith comﬁonentof the featurevector for
pixel j. The matchingpoint for pixel j is the pixel & in
therightimagethatminimizesthedissimilaritymeasureD,
givenby

agmin D(j, k) 2)

where, the k variesover the set of possibletarget pixels.
The searchHor eachpixel j in theleft imagecanbelimited
to thepixelsof thesamescanline, within arangeof dispari-
ties[dr,, dar] correspondingo theminimumandmaximum
possibledisparitiesjf known.

2.2 Dynamic Programming Formulation

Dynamic programmingis an effective stratgy to com-
putecorrespondencdsr pixels. Considera costmatrix as
in Figurel with thenodegepresentingheweightof match-
ing apixelin leftimagewith apixelin rightimage.Thecost
of matchingpixel m in leftimageandpixeln in rightimage
canbe computedbasedon the costsof matchingall pixels
in theleft of thesetwo pixels(theshadedsquaren Figurel
or the rectangularareaon left-top of ¢(m,n)). If oneas-
sumegheorderingconstrainttheoptimal“path” computed
to matchthepixelsin left andrightimageswill resultin the
bestsetof matchedor the pixelsin left andrightimages.

Dynamic program basedformulations match lines to
lines. They canalso usethe matchesfound for previous



C(m,n

Figure 1. Matching two scan lines using a dy-
namic programming based formulation

pixelsin the samescanline in the computatiorfor the sub-
sequenbixels[4, 3]. We extendthis approachto find the
matchesusingthe multifeaturedissimilarity measureiven
in Equationl. We alsomodelocclusionsexplicitly asdone
by Coxetal [4].

We usethe following costfor matchinga pixel j in the
left imageto a pixel k in therightimage.Eachpixel canbe
eitheroccludedor matched. The dissimilarity measurdan
the caseof occlusionss a constant.The modifieddissimi-
larity measureanbegivenby

P o if thereis anocclusion
D'(j, k) {D(j,k) otherwise (3)

where(C, is the costof occlusion.We shouldoptimizethe
total costof matchinga scanline of theleft imagewith the
samescanline of theright imageunderthe above formula-
tion. Theobjective functionfor minimizationis givenby

J=> D (4)
JES;

wherej belongsto the set.S; of pixelsin the left image
and D} is the optimal matchingcostfor j over the scan
line in the right image. The setS; could be a scanline,
a partitioning of the imagebasedon ary criterion, or the
wholeimageitself. A possiblydifferentsetof weightswill
be computedor eachfeatureover eachpartition S;, aswe
will seelater We seekto find theindividual matchedor the
pixelsof the scanline thatminimizesanaggrejatemeasure
representedly J.

3 Estimating Feature Relevances

Theminimizationof J hastwo parts.Minimization of J
for eachsourcepixel j over the target scanline and mini-
mizationof J overtheweightsw;. The dynamicprogram-
ming formulation achievesthe first partasgivenin Equa-
tion 2, keepingweightsfixed. We minimize over the all
possibleweightsW = {w;} usingthe partialderivativesof
J with respecto the weightsof the featuresof the feature
vector We rewrite the objective function given in Equa-

tion 4 asgivenbelow.

J=Y w}> ‘D (5)
i JES;

The secondsummationaggreyatesthe contribution of fea-
tures in the matchingprocessy summingits contribution
"D;- for eachpixel j overascanline. Theform of the ob-
jective function givenin Equation5 enablesus to identify
andweight the contribution of eachfeatureseparatelhand
providesanalyticaltractabilityto the optimizationproblem.
The useof the sameweightsa secondtime in Equation5
(it is alreadypresenin the expressiorfor D givenin Equa-
tion 1) enhanceshe impactof eachfeatureand malkesit
possiblefor J to be optimizedin two steps. The dynamic
programmingalgorithmwill optimize J with respecto the
targetpixel asmentionedabove. The procedurdo optimize
it with respecto theweightsw; is givenbelow.

An unconstrainedninimizationof .J with respecto W
is impossible,asw; = 0 will be the minimum. We have
alreadymentionedthe constraintw; > 0. Sincetheinter-
estis only in finding the correspondenceshich will yield
optimalvalueof J, we canimposethe following constraint
withoutary lossin generality

p
> wi=1 (6)
=1

This restrictsthe weightsto lie on a hyperplandn the pos-
itive orthant. This continousvaluesof featurerelevances
allows a smoothvaraionof importancesndresultin more
stableiterative algorithm.

We usethefollowing Lagrangiarfor the optimisation:

p p
FW,A) => w!> "Dy = XD wi—1)
i=1 j i=1
Differentiating the Lagrangianwith respectto w,, and
equatingto zero

OF :
J
Solvingfor w,,, andsubstitutingt in Equation6, we canget

y4 J i
k=1 Zj kD;
Thustheweightw,, for eachfeaturem canbe updated,
possiblyfor usein thenext iteration,usingEquation?. Fea-
tureswith high costsof matchingwill be reducedin im-
portanceandvice versa,adaptvely adjustingto the views
basedon the relative performanceof eachfeaturein the
matching. The summationover j can be performedover
eachscanline, overthe entireimage,or over ary otherpar
titioning of the image. Accordingly, a setof weightswill

1
A= ———— andw,, =

P 1



be computedor eachscanline, for the entireimage,or for

eachpartition, respectiely. In our dynamicprogramming
situation theoptimizationof .J is performedovereachscan
line independentlyHence ,we useindividual scanlines as
our sourcepartitiion S;.

4 Implementation and Results

Sincethe ordering constraintis valid for epipolarcor-
rectedimagepairs,dynamicprogramming]7, 4, 3] canbe
usedfor this task quite effectively, carrying forward the
minimummatchingcostandthe matchingpointasthe scan
line in theleft imageis traversed At eachpoint, the costof
matchingpixelsj andk in left andrightimagesC(j, k), is
givenby

C(Jak - 1) + CO,C(j - ]-ak) + Co} (8)

The C valuesare initialized to C(i,0) = i = Cy,Vi and
C(0,5) = j = Co,Vj. A zerothpixel matchingwith ith
oneimpliesanocclusionof ¢ pixels. Oncethe optimal cost
of matchingthe last pixel of the scanline is computedthe
optimal path can be tracedback by analyzingwhich term
providedthe minumumfor eachmatchin Equation8. The
first term correspond¢o no occlusions the secondto left
occlusion,andthelastto right occlusion.The disparityfor
pixeliis|i — j| if C(3, ) is presenbntheoptimalpath.

Marny constrainthave beentried to improve the match-
ing basedon dynamicprogramming.We usethe horizon-
tal andvertical cohesvity constrainteemployed by Cox et
al. [4]. Cohesity constraintaminimisethe numberof dis-
continuitiesin horizontalandverticaldirectionsandprovide
sharpandcrisp disparitymaps. The constraintsassociated
with theintensityedgedo modelocclusiongivenby Birch-
field andTomasi[3] couldalsobeused.

Our methodalso keepstrack of the costsof individual
featuresalongthe optimal path. Theseareusedto evaluate
the relative importancef the featuresusing Equation?.
The optimal pathcomputedusingthe currentsetof weights
usingdynamicprogrammingaptimizestheD; components
of the objectie function. Estimationof the weightsbased
onthe costsof individual featuresoptimizesJ with respect
to the featureweights. Thesestepscanbe repeatedill the
changen weights) ", |w; — w'd| is lessthanathresholck.

In the restof this section,we provide examplesto val-
idatethe usefulnes®of our algorithmfor stereocorrespon-
dence. In theseexamples,the set.S; includesall pixels.
Thus, whenever we estimatedthe featurerelevances,we
computednly onesetof weightsfor the entireimage.The
imagesusedwereall 256 x256. Thee usedto estimatecon-
vergencefor the total changein absoluteweightsbetween
successie iterationswas0.0001.

Example1 We study the effectivenessof using multiple
featuredfor correspondencen a pair of randomdot stere-
ogramsin this example. The syntheticstructureusedis a

weddingcake structure,popularin analyzingstereoalgo-
rithms, with threelevels of disparitiesof 1, 2, and5. The
textureimagesusedhave 10% of the pixelsassignedaran-
domgrayvaluein therange[0,255]. Thetextureimagecan
have morethanonesuchband similarto RGB or othermul-

tispectralimages.In thatcasewe useeachbandasa differ-

entfeaturefor matching.The disparitymapcomputedwith

only one bandhad 1011 misclassifiedpixels, when com-
paredwith the true disparitymap. We thenmadea colour
imageusingthreerandomimagebandsor texture. Thedis-

parity mapis thencomputedusingthreebands with equal
importancegivento each.The numberof misclassifiedix-

elsreducedto 364 in this case. We estimatedhe relative
importance®f thethreefeaturesusingthe proceduregiven
in the previous section. All featureswere estimatedo be
equallyrelevantby our procedure This wasquite expected
aseachbandessentiallycontainedequalinformation.

The above example brings out the advantagesof us-
ing multiple featuresfor correspondenceThe additional
featuresneednot be additionalinformation suchasthose
presentin otherspectralbands. The next exampledemon-
strateshow derived secondaryfeaturescan be usedeffec-
tively to improve the correspondencia presencef anatu-
ral texture. The pixel-to-pixel matchingalgorithmsarevery
sensitveto thephotometriovariationsandnoisewhenusing
gray level valuesalone. Integrating derived featureswith
the gray level valuesin the matchingprocesscan reduce
the sensitvity to a large extent as the following example
demonstrates.

Example 2 In this example,we considera naturalimage
texture,comprisingof regionswith strongandmediumvari-
ations, shavn in Figure 2(a). A weddingcake structure
wasimposedon this to generatahe right image. Addition-
ally, an additive zero-meanGaussiamoisewith standard
deviation ¢ = 5 wasalsointroduced. The left andright
imagesare shovn in Figure 2(a) and Figure 2(b) and the
true dispaity mapis showvn in Figure 2(h). The disparity
map computedusing the gray level alone,showvn in Fig-
ure 2(e),is very noisy. Thewell known weaknes®f pixel-
to-pixel matchingschemesisingasinglefeaturein thepres-
enceof noiseis demonstratethere. We subsequentlynte-
gratedtwo derived featuresto the matchingprocessusing
our framework. The edgestrength— the magnitudeof the
edgevector obtainedusing simple Sobeloperatorsn hor-
izontal and vertical directions— was the first derived fea-
ture used. Texture number— a ternary numberrepresen-
tation of the neighbourhoodyray-values,whetherthey are
less,moreor equalcomparedo the presenpixel —wasthe
second8]. Thetexture numberencodeghe local relation-
shipsof the pixel's graylevel valuewith thoseof its neigh-
bours. The texture unit numberfor pixel to a is defined
asT, = 3'E(a;,a),i = 1...8 whereay,...,ag arethe
neighboursf a¢ and E(a;,a) is 0, 1, or 2 accordingto the
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Figure 2. Correspondence computed with derived features (Refer to the Example 2 in the text)

gray-valueof a; is less,equalor morethanthatof a. The
featureimagescorrespondingo the two derived features
areshown in Figure2(c) andFigure2(d) respectiely. Cor-

respondencewere computedusing combinationsof these
threefeatures. Figure 2(f) shavs the disparity map com-
putedusingthegrayvalueandedgestrengthandFigure2(g)

shavsthedisparityimagecomputedwith all three.In each
case,the featureswere weightedequally The additional
featureimagesreducedhe mismatchegonsiderablyascan
be seenfrom the disparity maps. Disparity map computed
with gray-valuealonehad21954misclassifiecpixels. The
combinationof edgeand gray-value reducedthis to 3373
andthe combinationinvolving all threefeaturesreducedt

furtherto 1614pixels.

The above examplesdemonstratéhe advantagesf us-
ing heterogenouseaturesto improve the correspondence
accurray. We now explore the effect of estimatingtheir
relatve importancesusing the non-supervisedgrocedure
we presented.Emphasisingsomefeaturesabove the oth-
ersadaptvely canimprovethecorrespondengeerformance
further, dependingn the situation.

Example 3 We estimatedhe featurerelevancesusingthe
proceduredescribedn the previoussectionto theabove ex-
ampleto computethe weightsof the threefeaturesused.
For this, the performancef eachfeaturewasindependently
computedwhile matchingand the weightswere adjusted
using Equation? iteratively. The processcorvergedin 28
iterationswith a weightvectorof [0.11,0.41,0.48). Con-
vereggncepropertieswere excellentwith changein weight
goingbelow 0.1 within 6 iterationsandbelow 0.0001 within
28 iterations. The disparity map computedwith the esti-
matedweightsis shavn in Figure 3a. This further brought
down the numberof misclassifiegixelsto 1302.

Example4 The estimatedweight of eachfeaturerepre-
sentsits relative importancein the matchingprocessfor
the specificpair of images. In the presencef noisein an
image,our methodto estimatefeaturerelevancesautomat-
ically takesinto accountthe noisecontentin eachbandor

feature. Eachfeaturecan subsequentipe emphasisear
deemphasised.o demonstraté¢his, we considerarandom-
colour (threeband)stereogramAdditive zero-mearGaus-
sian noiseof ¢ = 1,5 and10 was addedrespectrely to
the first, secondandthird bands. The disparity map with
equalweightsto each,shonvn in Figure3b, had12363mis-
classifiedpixels. Theiterative featurerelevanceestimation
procedurecorvergedin 33 iterationsandyieldeda weight
vectorof [0.77,0.15,0.08]7. Iterationsstoppedonly when
the changen weightwasbelov 0.0001. The disparitymap
usingthe estimatedveights,shavn in Figure3(c), had266
misclassifiegixels. Thechangen weightis plottedagainst
theiterationnumberin Figure3(d)to studythecorvergence
propertiesof theiterative procedurelt canbeseerfrom the
graphthat the corvergencewas fast and that the weights
changedittle after5 or 6 iterations.

Iterations.

(o (0

Figure 3. (a) Final disparity map computed for
Example 2. (b) Disparity map with equal em-
phasis of all bands for a noisy random colour
stereogram. (c) Disparity map for the same
using optimal weights. (d) Convergence rate
of the iterative algorithm.



Example5 We now shav the resultsof runningour algo-
rithm onanumberof standardealimages.Therealimages
donothavethegroundtruthandhencehequantitatve anal-
ysis presentechbove cannotbe performedon them. The
effectivenessand behaviour of our algorithmis betterex-

plainedusingthe syntheticexamplespresenteabove. Fig-

ure 4 shaws the resultson the “bush” image pair and the
“meter” imagepair. Theresultsareasgoodor betterthan
the raw matchingresultsof ary pixel-to-pixel matchingal-

gorithms.Most algorithmsimprove their final resultsusing
tuned post-processingperations. Sincethe point of this

paperis to demonsratéhe schemeof featureintegrationin

a pixel-to-pixel framework, we have not appliedary post-
processingo the resultsgiven by the program. The figure
shaws resultsof usingonefeature(gray level) andtwo fea-
tures(gray level andthe Sobeledgestrength)at eachpixel

for the matching. The averageweightsvectorestimatecdy

our algorithmfor the two featuresfor the shrubimagewas
[0.786,0.214] andfor themeterimageit was[0.914, 0.086].

Theedgeinformationis densefor the shrubimageandwas
relevantto the match. It wasnot asreliablefor the meter
imagesastherewerefewer edgesn it.

5 Conclusionsand Future Work

In thispaperwe presented stereccorrespondencalgo-
rithm using dynamicprogrammingthat canintegrate mul-
tiple typesof featuresin a flexible manner We also pre-
sentechnon-supervisegrocedurgo computetherelevance
of eachfeaturein a multifeatureframevork basedon a pair
of exampleimages.Theiterative estimationprocesscanbe
tunedto anew situationin afew iterations.Our algorithmis
mostsuitableto situationswherea coupleof representatie
pairsof imagescanbe usedfor learningtherelative impor-
tancesf thefeaturego beusedfor correspondenceompu-
tation. Thesecanbe usedsubsequentljor the computation
ontheactualimages.Onesuchsituationis dynamicstereo,
or stereocomputedbetweencorrespondingramesof two

Figure 4. Results on “bush” images (top) and the “meter” images (bottom)

videosequencesf thesamescene Herethe characteristics
of the imagesrelevant for stereomatchingdo not change
muchwithin the sequenceThus, the first few framescan
be usedfor computingthe featureweights, which canbe
usedfor all subsequerframes.
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