
Efficient Optimization for Rank-based Loss Functions

Pritish Mohapatra∗ Michal Roĺınek∗

IIIT Hyderabad IST Austria
pritish.mohapatra@research.iiit.ac.in michal.rolinek@ist.ac.at

C.V. Jawahar Vladimir Kolmogorov M. Pawan Kumar
IIIT Hyderabad IST Austria University of Oxford

jawahar@iiit.ac.in vnk@ist.ac.at pawan@robots.ox.ac.uk

Abstract

The accuracy of information retrieval systems is often mea-
sured using complex non-decomposable loss functions such
as the average precision (AP) or the normalized discounted
cumulative gain (NDCG). Given a set of positive (rele-
vant) and negative (non-relevant) samples, the parameters
of a retrieval system can be estimated using a rank SVM
framework, which minimizes a regularized convex upper
bound on the empirical loss. However, the high compu-
tational complexity of loss-augmented inference, which is
required to learn a rank SVM, prohibits its use in large
training datasets. To alleviate this deficiency, we present a
novel quicksort flavored algorithm for a large class of non-
decomposable loss functions. We provide a complete char-
acterization of the loss functions that are amenable to our
algorithm. Furthermore, we prove that no comparison based
algorithm can improve upon the computational complexity
of our approach asymptotically. We demonstrate that it is
possible to reduce the constant factors of the complexity
by exploiting the special structure of the AP loss. Using
the PASCAL VOC action recognition and object detection
datasets, we show that our approach provides significantly
better results than baseline methods that use a simpler de-
composable loss in comparable runtime.

1 Introduction

Information retrieval systems require us to rank a set of
samples according to their relevance to a query. The param-
eters of a retrieval system can be estimated by minimizing
the prediction risk on a training dataset, which consists of
positive and negative samples. Here, positive samples are
those that are relevant to the query, and negative samples
are those that are not relevant to the query. Typically, the
risk is measured using a user-specified loss function. For
information retrieval, several intuitive loss functions have
been proposed in the literature. These include simple de-

∗The first two authors contributed equally.

composable losses (that is, loss functions that decompose
over each training sample) such as 0-1 loss [1, 2] and the
area under the ROC curve [3, 4], as well as the more com-
plex non-decomposable losses (that is, loss functions that
depend on the entire training dataset) such as the average
precision (AP) [5, 6] and the normalized discounted cumu-
lative gain (NDCG) [7, 8].

Several risk minimization frameworks proposed in the lit-
erature are applicable to the problem of learning the pa-
rameters of a retrieval system: structured support vector
machines (SSVM) [9, 10], neural networks [11], decision
forests [12], and boosting [13]. Regardless of which frame-
work is employed, a key practical problem that one needs to
address is how to efficiently minimize the empirical risk. Our
work addresses this problem in the context of the complex
non-decomposable loss functions for information retrieval
systems. In particular, we focus on the aforementioned AP
and NDCG measures of risk. For clarity, we restrict our
description to the SSVM framework, while noting that our
work is also applicable to other learning frameworks.

The SSVM framework provides a linear prediction rule
to obtain a structured output for an input. In this work,
the structured output represents a ranking of a given set of
samples. Henceforth, we will refer to this restriction of an
SSVM as the rank SVM framework. A rank SVM provides
the score of a putative ranking as the dot product of its pa-
rameters and the joint feature vector of the input samples
and their ranking. The prediction requires us to maximize
the score over all possible rankings. During training, the
parameters of a rank SVM are estimated by minimizing a
regularized convex upper bound on the prediction loss over
the training dataset. While in theory the rank SVM frame-
work can be employed in conjunction with any loss function,
in practice its feasibility depends on the computational ef-
ficiency of the corresponding loss-augmented inference. In
other words, given the current estimate of the parameters,
it is important to be able to efficiently maximize the sum of
the score and the loss function over all possible rankings.

When the loss function is decomposable, the loss-
augmented inference problem can be solved efficiently by

1

ar
X

iv
:1

60
4.

08
26

9v
1

 [
cs

.C
V

]
 2

7
A

pr
 2

01
6

independently considering each training sample. However,
for non-decomposable loss functions, it presents a hard com-
putational challenge. Specifically, given a training dataset
with P positive and N negative samples, the best known
algorithms for loss-augmented inference for AP and NDCG
loss functions have a complexity of O(PN +N logN) [8, 6].
Since the number of negative samples N can be very large
in practice, this prohibits their use on large datasets.

In order to alleviate the computational deficiencies of the
AP and the NDCG loss functions, we make four contribu-
tions. First, we characterize a large class of ranking based
loss functions that are amenable to a novel quicksort fla-
vored optimization algorithm for the corresponding loss-
augmented inference problem. We refer to the class of loss
functions as QS-suitable. Second, we show that the AP and
the NDCG loss functions are QS-suitable, which allows us to
reduce the complexity of the corresponding loss-augmented
inference to O(N logP). Third, we prove that there cannot
exist a comparison based method for loss-augmented infer-
ence that can provide a better asymptotic complexity than
our quicksort flavored approach. Fourth, we exploit the spe-
cial structure of AP to further speed up the corresponding
loss-augmented inference problem. Note that the improve-
ment is only in terms of a constant factor, as an asymptotic
improvement is not possible. Nonetheless, it is very effective
in practice to reduce the time required for each iteration of
our quicksort flavored algorithm.

We demonstrate the efficacy of our approach on
two challenging problems—action recognition and object
detection—using publicly available datasets. Rather sur-
prisingly, we show that the optimization of the complex non-
decomposable AP and NDCG loss functions can be carried
out faster than that of the simple decomposable 0-1 loss.
Specifically, while each loss-augmented inference call is more
expensive for AP and NDCG loss functions, it takes fewer
calls in practice to estimate the parameters of the corre-
sponding rank SVM.

2 Background

We begin by providing a brief description of the gen-
eral SVM framework that employs a rank-based loss func-
tion, hereby referred to as the rank SVM. Note that this
framework is the same as the one employed in previous
work [8, 14, 15, 6]. The two specific instantiations of the
rank SVM framework that are of interest to us employ the
average precision (AP) loss and the normalized discounted
cumulative gain (NDCG) loss respectively. A detailed de-
scription of the two aforementioned loss functions is pro-
vided in the subsequent subsection.

2.1 The Rank SVM Framework

Input. The input of a rank SVM is a set of n samples,
which we denote by X = {xi, i = 1, . . . , n}. For example,
each sample can represent an image and a bounding box of
a person present in the image. In addition, we are also pro-
vided with a query, which in our example could represent
an action such as ‘jumping’. Each sample can either belong
to the positive class (that is, the sample is relevant to the
query) or the negative class (that is, the sample is not rele-
vant to the query). For example, if the query represents the
action ‘jumping’ then a sample is positive if the correspond-
ing person is performing the jumping action, and negative
otherwise.

The positive and the negative samples are denoted by P
and N respectively. In other words, if x ∈ P and y ∈ N
then x belongs to the positive class and y belongs to the
negative class. Thoroughout the paper, we assume that the
sets P and N are provided during training, but are not
known during testing.

Output. Given a query and a set of n samples X, the
desired output of the framework is a ranking of the sam-
ples according to their relevance to the query. This is often
represented by an n×n ranking matrix R defined as follows:

• Rx,y = 1 if x is ranked higher than y;

• Rx,y = −1 if x is ranked lower than y;

• Rx,y = 0 if x and y are ranked the same.

In other words, the matrix R is anti-symmetric and its el-
ements, which belong to the set {−1, 0, 1}, represent the
relative ranking of a pair of samples.

Given the sets P and N during training, we construct a
ground truth ranking matrix R∗, which ranks each positive
sample above all the negative samples. Formally, the ground
truth ranking matrix R∗ is defined as follows:

• R∗x,y = 1 if x ∈ P and y ∈ N ;

• R∗x,y = −1 if x ∈ N and y ∈ P;

• R∗x,y = 0 if x,y ∈ P or x,y ∈ N .

Note that the ground truth ranking matrix only defines a
partial ordering on the samples since R∗i,j = 0 for all pairs
of positive and negative samples. We will refer to rankings
where no two samples are ranked equally as proper rankings.
Without loss of generality, we will treat all rankings other
than the ground truth one as a proper ranking by breaking
ties arbitrarily.

Features and Joint Feature Vectors. We denote the
feature vector of a sample x by ψ(x). For example, if x
denotes the bounding box of a person in an image, then ψ(x)
could represent its Poselet feature [16]. We do not place any
restrictions on the form of the feature vector. Given a set

2

of samples X and a ranking R, we define the joint feature
vector as

Ψ(X,R) =
1

|P| |N |
∑
x∈P

∑
y∈N

Rx,y(ψ(x)− ψ(y)). (1)

In other words, the joint feature vector is the scaled sum of
the difference between the features of all pairs of samples,
where the scaling is specified by the ranking. Note that,
for any ranking R, the size of the joint feature vector is the
same as the size of the feature vector of a sample.

Parameters and Prediction. The parameter vector of
rank SVM, denoted by w, provides a linear scoring function
for any ranking R of an input. Specifically, the score of
the ranking is the dot product of the parameters and the
joint feature vector of the input and the ranking. Given
the parameters w, the ranking of an input X is predicted
by maximizing the score, that is, by solving the following
optimization problem:

R(w) = argmax
R

w>Ψ(X,R). (2)

The special form of the joint feature vector in equation (1)
enables us to efficiently obtain the predicted ranking R(w)
by sorting the samples in descending order of their indi-
vidual scores. Here, the individual score of a sample x is
defined as

s(x) = w>ψ(x). (3)

We refer the reader to [14, 6] for details.

Parameter Estimation. We now turn our attention
to the problem of estimating the parameters of a rank SVM
given the input samples X, together with their classification
into positive and negative sets P and N respectively. To
this end, we will minimize a regularized upper bound on the
empirical risk of prediction. The empirical risk is computed
using a user-specified loss function ∆(R∗,R(w)) where R∗

is the ground truth ranking that is determined by P and N
and R(w) is the predicted ranking as shown in equation (2).
For now, we will assume that the loss function is general. In
the next subsection, we will define the two widely used loss
functions—AP loss and NDCG loss—that are the focus of
this work.

Formally, the parameters of a rank SVM are obtained by
solving the following convex problem:

min
w,ξ

1

2
‖w‖+ Cξ, (4)

s.t. wTΨ(X,R∗)−wTΨ(X,R)≥∆(R∗,R)−ξ,∀R.

Optimization for Parameter Estimation. At first
glance, problem (4) appears to be computationally in-
tractable due to the large number of constraints. However,
it has been shown to lend itself to several efficient algo-
rithms [17, 18, 19]. The common requirement of all the
aforementioned methods is to be able to efficiently solve the

problem of loss-augmented inference. In other words, the
key to learning a rank SVM is to solve the following prob-
lem for any given parameter vector w and input X:

R̄ = argmax
R̂

w>Ψ(X, R̂) + ∆(R∗, R̂). (5)

The solution to the above problem allows us to compute the
term

Ψ(X, R̄)−Ψ(X,R∗),

which has various useful interpretations: the subgradient of
the unconstrained version of problem (4), which enables sub-
gradient descent [18]; the conditional gradient of the dual of
problem (4), which enables Frank-Wolfe optimization [19];
or the most violated constraint, which enables the efficient
cutting plane algorithm of [17] that is used in our experi-
ments.

2.2 Loss Functions

We now describe two specific instantiations of the general
rank SVM framework that will be used throughout the re-
mainder of the paper. The two instantiations arise due to
the choice of the loss functions. The first instantiation uses
the average precision (AP) loss, which is very popular in the
computer vision community as evidenced by its use in the
various challenges of PASCAL VOC [20]. The second in-
stantiation uses the normalized discounted cumulative gain
(NDCG) loss, which is very popular in the information re-
trieval community [8].

Proper Loss Functions. Before we describe the two loss
functions in detail, we note that all the rankings R other
than the ground truth ranking R∗ will be assumed to be
proper for the remainder of the paper. Recall that a proper
ranking is one that does not assign an equal rank to any pair
of samples. We will refer to a loss function defined between
a ground truth ranking R∗ and a proper ranking R as a
proper loss function. Henceforth, we will restrict ourselves
to only proper rankings when dealing with problem (5).

Notation. In order to specify the loss functions, and our
efficient algorithms for problem (5), it would be helpful to
introduce some additional notation. We define ind(x) to be
the index of a sample x in R. Note that the notation does
not explicitly depend on R as the ranking will always be
clear from context. If x ∈ P (that is, for a positive sam-
ple), we define ind+(x) as the index of x in the total order of
positive samples induced by R. For example, if x is the high-
est ranked positive sample then ind+(x) = 1 even though
ind(x) need not necessarily be 1 (in the case where some
negative samples are ranked higher than x). For a negative
sample x ∈ N , we define ind−(x) analogously: ind−(x) is
the index of x in the total order of negative samples induced
by R.

AP Loss. Using the above notation, we can now concisely
define the average precision (AP) loss of a proper ranking

3

R given the ground truth ranking R∗ as follows:

∆AP (R∗,R) = 1− 1

|P|
∑
x∈P

ind+(x)

ind(x)
.

For example, consider an input X = {x1, · · · ,x8} where
xi ∈ P for 1 ≤ i ≤ 4, and xi ∈ N for 5 ≤ i ≤ 8. In other
words, the first four samples are positive while the last four
samples are negative. If the proper ranking R induces the
order

(x1,x3,x8,x4,x5,x2,x6,x7), (6)

then

∆AP (R̂,R) = 1− 1

4

(
1

1
+

2

2
+

3

4
+

4

6

)
≈ 0.146.

NDCG Loss. We define a discount D(i) = 1/ log2(1 + i)
for all i = 1, · · · , |P|. This allows us to obtain a loss function
based on the normalized discounted cumulative gain as

∆NDCG(R∗,R) = 1−
∑

x∈P D(ind(x))∑|P|
i=1D(i)

.

For example, consider the aforementioned input where the
first four samples are positive and the last four samples are
negative. For the ranking R that induces the order (6), we
can compute

∆NDCG(R̂,R) = 1− 1 + log−12 3 + log−12 5 + log−12 7

1 + log−12 3 + log−12 4 + log−12 5

≈ 0.056.

2.3 State of the Art

The main focus of our work is to enable efficient optimiza-
tion of problem (5) for the AP loss and the NDCG loss. This
in turn will allow us to efficiently learn the parameters of a
rank SVM for a given training data by solving problem (4).
Before we describe our optimization approach in detail, we
present a brief overview of the state of the art for solving
problem (5) with the aim of contextualizing our contribu-
tions. We focus on two aspects of prior work, namely their
correctness and their computational complexity.

Correctness. Chakrabarti et al. [8] use a slightly modi-
fied definition of the discount D(·) as

D(i) =

{
1 1 ≤ i ≤ 2

1/ log2(i) i > 2
.

For the resulting NDCG loss, they propose a greedy algo-
rithm for solving problem (5). However, with the above def-
inition of a discount, it is possible to obtain a corner-case
where their proof of correctness of the greedy algorithm is
not valid (specifically, there exists a counter-example for fact
3.4 of [8]). In order for the greedy algorithm to be correct,

it turns out that the convexity of D(i) is essential. As our
main concern is to improve the efficiency of learning a rank
SVM for various loss functions, we defer the discussion on
the counter-example for the previous discount function and
its corrected version to the appendices.

Computational Complexity. The previous best algo-
rithms for solving problem (5) had runtimes O(|N | |P| +
|N | log |N |) for both ∆AP [6] and ∆NDCG [8]. In the case
of ∆NDCG the authors also suggest to use a cut-off k in
the definition of discount D(i), setting D(i) = 0 for i ≥ k.
With this simplification they achieved a reduced complexity
of O((|N |+ |P|) log(|P|+ |N |) + k2).

The preliminary version of our work describes two algo-
rithms for ∆AP [15]. The first algorithm leads to a com-

plexity of O(|P|2 + |N | log |N |). The second is a heuristic
that improves the efficiency in practice, but does not re-
sult in any guaranteed improvements in the computational
complexity.

3 Our Contributions

We present a novel quicksort flavored algorithm for prob-
lem (5), which achieves a complexity of O(|N | log |P|) for
a large class of ranking based loss functions. Note that the
quadratic terms in the complexity vanish. Our only assump-
tion is that |N | > |P|, which often holds in practice as it is
easier to collect negative samples than positive ones.

We provide a complete characterization of the loss func-
tions that are suitable for our algorithm, which we refer
to as the QS-suitable class of loss functions. We show that
both the AP loss and the NDCG loss are QS-suitable, which
enables the use of our efficient algorithm to learn the param-
eters of the corresponding rank SVM.

Furthermore, we also show that our runtime also meets
the optimal complexity among comparison-based algorithms
for problem (5). This rules out the possibility of improving
the asymptotic computational complexity of solving prob-
lem (5) compared to our algorithm. However, it may still
be possible to improve the underlying constants within the
complexity, thereby speeding up the algorithm. Indeed, we
will shortly demonstrate that the additional structure of the
AP loss allows us to incorporate further improvements.

4 Quicksort Flavored Optimization

Given the parameters w of a rank SVM, as well as a set of
samples X, we are interested in obtaining the most violated
ranking by solving problem (5). At first glance, the problem
seems to require us to obtain a ranking matrix R̄. How-
ever, it turns out that we do not explicitly require a ranking
matrix. Instead, we need to compute two related quanti-
ties to enable optimization via any of the standard methods
for estimating the parameters of an SVM. First, the joint

4

feature vector of the most violated ranking Ψ(X, R̄). In or-
der to compute Ψ(X, R̄) without explicitly computing the
matrix R̄, we observe that the joint feature vector is a lin-
ear combination of the sample feature vectors, as shown in
equation (1). We denote the vector of coefficients of this lin-
ear combination by c, and design an algorithm to directly
compute c. Note that Ψ(X, R̄) can be computed from c
in O(|N | + |P|) time. Second, we require the value of the
loss function ∆(R∗, R̄) at the most violated ranking. Once
again, our algorithm aims to accomplish this without ex-
plicitly computing the ranking matrix.

In more detail, our algorithm uses an intermediate rep-
resentation of the ranking using the notion of interleaving
ranks. Given a ranking R and a positive sample x, the
interleaving rank of x, denoted by rank(x), is defined as
one plus the number of negative samples preceding x in R.
Analogously, for a negative sample x, the interleaving rank
rank(x) is defined as one plus the number of positive sam-
ples preceding x in R. Note that, similar to our notation
for ind(·), ind+(·) and ind−(·), we have dropped the depen-
dency of rank(·) on R as the ranking matrix would be clear
from context. Note that the interleaving rank of all the sam-
ples does not specify the total ordering of all the samples
according to R as it ignores the relative ranking of the pos-
itive samples among themselves, and the relative ranking of
the negative samples among themselves. However, as will
be seen shortly, for a large class of ranking based loss func-
tions, interleaving ranks are sufficient to compute both the
joint feature vector and the loss of a given ranking function.

The rest of the section is organized as follows. We begin
by defining the class of loss functions that are amenable to
a quicksort flavored algorithm, which we call QS-suitable
loss functions. Subsection 4.2 provides some key observa-
tions that exploit the properties of QS-suitable loss func-
tions to aid the development of an efficient algorithm for
problem (5). Subsection 4.3 describes our quicksort fla-
vored divide-and-conquer approach in detail. Finally, sub-
section 4.4 provides the computational complexity of our
approach. Furthermore, it establishes that there cannot ex-
ist any other comparison based algorithm that has a better
asymptotic computational complexity compared to our ap-
proach.

4.1 QS-Suitable Loss Functions

A proper loss function ∆ = ∆(R∗,R) is called QS-suitable
if it meets the following four conditions.

(C1) ±-pattern dependence. Given a proper ranking R,
its ±-pattern is defined as the pattern obtained by re-
placing each positive sample with a “+” symbol and
each negative sample with a “−” symbol. Our first
condition states that, for a proper ranking R, the value
of ∆(R∗,R) depends only on the ±-pattern of R and
can be computed from this pattern in O(|N |+|P|) time.

(C2) Additive decomposability with respect to neg-
ative samples. There are functions δj : {1, . . . , |P| +
1} → R for j = 1, . . . , |N | such that for a proper rank-
ing R one can write

∆(R∗,R) =
∑
x∈N

δind−(x)(rank(x)).

(C3) j-monotonicity of discrete derivative. For every
1 ≤ j < |N | and 1 ≤ i ≤ |P| we have

δj+1(i+ 1)− δj+1(i) ≥ δj(i+ 1)− δj(i).

(C4) Fast evaluation of discrete derivative. For any
j ∈ {1, . . . , |N |} and i ∈ {1, . . . , |P|}, can the value
δj(i+ 1)− δj(i) be computed in constant time.

While the above conditions may at first appear to be re-
strictive, the following proposition establishes their useful-
ness for our work.

Proposition 1 Both ∆AP and ∆NDCG are QS-suitable.

The proof of the above proposition is provided in Ap-
pendix B. Having established that both the AP and the
NDCG loss are QS-suitable, the rest of the section will deal
with a general QS-suitable loss function. A reader who is in-
terested in employing another loss function need only check
whether the above four conditions are satisfied in order to
use our approach.

4.2 Key Observations for QS-Suitable Loss

Before describing our algorithm in detail, we first provide a
set of key observations which enable efficient optimization
for QS-suitable loss functions. To this end, it would be use-
ful to define two arrays, one for the positive sample scores
and one for the negative sample scores. Specifically, given a
parameter vector w, the score for a sample can be computed
as shown in equation (3). During training, the samples are
partitioned into the positive class and the negative class.

This allows us to define an array {s+i }
|P|
i=1 of positive sam-

ple scores and an array {s−i }
|N |
i=1 of negative sample scores.

Without loss of generality, we assume that the elements of
the two aforementioned arrays are distinct.1

Using the above notation, we will describe four key obser-
vations regarding QS-suitable loss functions. Their proofs
are for the most part straightforward generalizations of re-
sults that appeared in [6] and [15] in the context of the AP
loss ∆AP and can be found in Appendix A.

1In a general case we work with scores ŝ+i = s+i + i · ε for some

ε > 0. If ε is sufficiently small, then an optimal solution of scores {ŝ+i }
will also be an optimal solution for the original scores. Algorithmically,
this means that when we need to comparing scores s+i and s+j we check

whether i < j in case when s+i = s+j . The same argument applies for
the array of negative sample scores.

5

Observation 1 There exists an optimal solution R̂ of prob-
lem (5) in which the positive samples appear in the descend-
ing order of their scores s+i and also the negative samples
appear in descending order of their scores s−i .

Now it would seem natural to sort the arrays {s+i } and
{s−i } in descending order. However, we are aiming for com-
plexity below O(|N | log |N |), therefore we can not afford to
sort the negative scores. On the other hand, since |P| < |N |,
we are allowed to sort the array of positive scores {s+i }. For
purely notational purposes let {s∗i } be the array {s−i } sorted
in descending order. Furthermore, for j ∈ {1, . . . |N |} we de-
note the index of s−j in {s∗i } as j∗. It is worth keeping in
mind that, for the purposes of the algorithm, we do not have
access to the array {s∗i }. However, we will compute j∗ for
many values of j ∈ {1, . . . , |N |}. Note that in the sought

ranking R̂ if the score of x ∈ N is s−j , then j∗ = ind−(x).
Let R be the set of vectors r = (r1, . . . , r|N |), where for

each 1 ≤ j ≤ |N |, one has 1 ≤ rj ≤ |P| + 1, and rk ≤ rl
whenever k < l. To each vector r ∈ R we can associate the
unique ranking Rr satisfying the condition from Observa-
tion 1 such that rj∗ = rank(x) where x ∈ N is the sample
with score s−j . Then it suffices to restrict the optimization
problem (5) to rankings that correspond to vectors r ∈ R.

In the following observation we uncover that we can com-
pute the output given the vector r and a weaker version of
the array {s∗j}.

Observation 2 Assume we are given a vector r ∈ R and
an array {s∗∗j } which is a rearrangement of the array {s−j }
in which s∗∗i > s∗∗j whenever ri < rj. Then we can compute
the entire output of the algorithm, that is the vector c as well
as the value ∆(R∗,Rr) in time O(|N | + |P|). Moreover,
the mapping that produces vector c given the vector r is
injective.

Note that {s∗j} would meet the condition for {s∗∗j }. How-
ever, in {s∗∗j } we do not insist on correctly ordering the
negative samples with the same interleaving rank. Since
typically |P| < |N |, some interleaving ranks will be shared
by many negative samples and therefore {s∗∗j } should be
computationally less expensive to produce than s∗j .

A different phrasing of this observation was presented in
the context of a heuristic argument given in the preliminary
version of this work [15]. It was experimentally verified that
after only few iterations of the SVM optimization procedure
most of the negative samples get ranked after all the positive
samples. In light of the observation, this could, if detected,
potentially save substantial computational effort. Here we
exploit this idea even further.

It turns out that not only the loss function is decompos-
able over the negative samples as given in the condition (C2)
but in fact the same holds for the entire objective function
(5).

Observation 3 There are functions fj : {1, . . . , |P|+ 1} →
R for j = 1, . . . , |N | such that for a proper ranking R which

corresponds to some vector r ∈ R the objective function (5)
can be written as

|N |∑
j=1

fj(rj),

where the functions fj inherit property (C3) and provided
the value of s∗j also the property (C4). In particular, given
s∗j we can compute all the values of fj(i) for l ≤ i ≤ r in
O(r − l) time.

This gives us the opportunity to compute the interleaving
ranks independently. Let optj = argmax fj be the optimal
interleaving rank for j = 1, . . . , |N | (if there are multiple
such ranks, we pick the highest one, and denote it optj).
Finally, we set opt = {optj}.

It is not obvious that greedily maximizing the contribu-
tion of each sample greedily would produce a valid vector
opt ∈ R. However, for QS-suitable loss functions, this can
indeed be shown to be the case.

Observation 4 If i < j, then opti ≤ optj. In other words
opt ∈ R.

This has three consequences, the last two of which will be
incorporated into our algorithm.

• If we had access to {s∗j} we could simply compute optj
from j = 1 to j = |N |. As we have access to the discrete
derivative of fj , each optj is determined in O(|P|) time.
This is exactly the O(|P| |N | + |N | log |N |) algorithm
from [6].

• Even without access to {s∗j}, we can for fixed j find s∗j ,

the j-highest element in {s−i }, in O(|N |) time. This
would too lead to a O(|P| |N |) algorithm but we may
at each step modify {s−i } slowly introducing the correct
order. This will make the future searches for s∗j more
efficient.

• Knowing that opti = optj for some i < j, we can also
conclude that opti = optk = optj for each i < k < j.
This provides a cheap way to compute some parts of
the vector opt.

4.3 Divide and Conquer

Algorithms 1 and 2 describe the main steps of our ap-
proach. Briefly, we begin by detecting s∗|N|/2 that is me-
dian score among the negative samples. We use this to
compute opt|N |/2. Given opt|N |/2, we know that for all
j < |N | /2 optj ∈ [1, opt|N |/2] and for all j > |N | /2
optj ∈ [opt|N |/2, |P| + 1]. This observation allows us to
employ a divide-and-conquer recursive approach.

In more detail, we use two classical linear time array ma-
nipulating procedures Median and Select. The first one
outputs the index of the median element. The second one
takes as its input an index of a particular element x. It

6

rearranges the array such that x separates higher-ranked el-
ements from lower-ranked elements (in some total order).
For example, if array s− contains six scores [a b 4.5 6 1 c]
then Median(3, 5) would return 3 (the index of score 4.5),
while calling Select(3, 3, 5) would rearrange the array to
[a b 1 4.5 6 c] and return 4 (the new index of 4.5). The Se-
lect procedure is a subroutine of the classical quicksort
algorithm.

Using the two aforementioned procedures in conjunction
with the divide-and-conquer strategy allows us to compute
the entire vector opt. Furthermore, the array {s−} acquires
the property required for array {s∗∗i }. This allows us to
compute the entire output by Observation 2.

Algorithm 1: Algorithm for finding the most violated
constraint

Input: Unsorted arrays s+[1 . . . |P|] and s−[1 . . . |N |]
of positive and negative sample scores.

1 Sort(s+, 1, |P|) . by scores in decreasing order, this
takes O(|P| log |P|) time

2 OptRanks(1,|N |, 1, |P|+ 1)
3 Compute the output, that is c and ∆(R∗,R).

. by Observation 2, this takes O(|N |+ |P|) time

Algorithm 2: Recursive procedure for finding all inter-
leaving ranks.

Description: The function finds optimal interleaving
rank for all i ∈ [`−, r−] given that
(i) array s− is partially sorted, namely
MAX(s−[1 . . . `− − 1]) ≤ MIN(s−[`− . . . r−]) and
MAX(s−[`− . . . r−]) ≤ MIN(s−[r− + 1 . . . |N |]);
(ii) optimal interleaving ranks for i ∈ [`−, r−] lie in the
interval [`+, r+].

1 function OptRanks(int `−, int r−, int `+, int r+)
2 if `+ = r+ then
3 set opti = `+ for each i ∈ [`−, r−] and return
4 end
5 m = Median(`−, r−) . gives the index of the

median score in a subarray of s−

6 m = Select(m, `−, r−) . splits the subarray
by s = s−[m], returns the new index of s

7 Find optm by trying all options in [`+, r+]
8 if `− < m then OptRanks(`−, m−1, `+, optm)
9 if m < r− then OptRanks(m+1, r−, optm, r+)

10

4.4 Computational Complexity

While the previous subsection provides an elegant divide-
and-conquer strategy to estimate the output of problem (5),
we are yet to establish its computational efficiency. To this
end, we now present the following theorem.

Theorem 2 If ∆ is QS-suitable, then the task (5) can
be solved in time O(|N | log |P| + |P| log |P| + |P| log |N |),
which in the most common case |N | > |P| reduces to
O(|N | log |P|).

The complexity stated in Theorem 2 is in fact achieved
by Algorithm 1. In order to prove this, we first need to
establish the complexity of Algorithm 2 as O(|N | log |P| +
|P| + log |N |). Since the remaining parts of Algorithm 1
take O(|P| log |P| + |N |) running time, the total complex-
ity of Algorithm 1 will then be O(|N | log |P|+ |P| log |P|+
|P| log |N |) as claimed.

For the purposes of the running time analysis of Algo-
rithm 2, let us denote n = r−− `−+ 1 and p = r+− `+ + 1,
and set Tneg(n, p), Tpos(n, p) as the total time spent travers-
ing the arrays of negative and positive sample scores, respec-
tively, including recursive calls. The negative score array is
traversed in the Median and Select procedures and the
positive scores are traversed when searching for optm.

Proposition 3 The runtimes Tneg(n, p) and Tpos(n, p) sat-
isfy the following recursive inequalities

Tneg(n, p) ≤ Cn+ Tneg(n/2, p1) + Tneg(n/2, p2)

for some p1 + p2 = p+ 1,

Tpos(n, p) ≤ Cp+ Tpos(n/2, p1) + Tpos(n/2, p2)

for some p1 + p2 = p+ 1,

Tneg(n, 1) ≤ Cn, Tneg(1, p) = 0,

Tpos(n, 1) = 0, Tpos(1, p) ≤ Cp

for a suitable constant C. These inequalities imply
Tneg(n, p)≤C ′n log(1 + p) and Tpos(n, p)≤C ′(p− 1) log(1 +
n) for another constant C ′. Thus the running time of Al-
gorithm 2, where p = |P| + 1, n = |N |, is O(|N | log |P| +
|P| log |N |).

Proof. In both cases we proceed by induction. For the first
inequality the base step is trivial for high enough constant
C ′ and for the inductive step we may write

Tneg(n, p) ≤ Cn+ Tneg(n/2, p1) + Tneg(n/2, p2)

≤ Cn+
1

2
C ′n log(1 + p1) +

1

2
C ′n log(1 + p2)

= C ′n

(
C

C ′
+ log

√
(1 + p1)(1 + p2)

)
≤ C ′n log(p1 + p2) = C ′n log(1 + p)

where in the last inequality we used that

1 + (1 + p1)(1 + p2) ≤ (p1 + p2)2

for integers p1, p2 with p1 +p2 = p+ 1 ≥ 3. That makes the
last inequality true for sufficiently high C ′ (not depending
on n and p!).

7

The proof of the second inequality is an easier variation
on the previous technique. � In principle one
can reverse the role of positive and negative samples in the
definition of QS-suitable loss functions. Then a statement
analogous to Theorem 2 can be derived leading to (subop-
timal) complexity O(|P| log |N |+ |N | log |N |+ |N | log |P|).

4.5 Lower Bound on Complexity

A natural question that arises is whether the divide-and-
conquer strategy outlined in subsection 4.3 is in fact an op-
timal one. To answer this, we build on the observation that
our approach is analogous to the quicksort algorithm. This
allows us to prove the following interesting proposition.

Proposition 4 Let ∆ be an arbitrary loss function. Then
any comparison-based algorithm that computes the vector c
requires Ω(|N | log |P|) operations.

Proof of Proposition 4. Since the negative samples are
unsorted and the data is arbitrary, the optimal interleaving
ranks may induce any possible mapping from {1, . . . , |N |}
to {1, . . . , |P| + 1}. Due to Observation 2 each such map-
ping gives rise to a distinct possible vector c. There are

(|P|+ 1)
|N |

possibilities to be distinguished and each com-
parison has only two possible outcomes. Therefore we need

log2

(
(|P|+ 1)

|N |
)
∈ Ω(|N | log |P|) operations. �

Note that the above proposition only establishes an
asymptotic lower bound. It does not rule out the possibil-
ity of improving the constants hidden within the asymptotic
notation for a given loss function. Indeed, in the next sec-
tion, we show that it is possible to exploit the additional
structure of the AP loss to further speed-up our algorithm.

5 Additional Optimization for AP
Loss

The computation of the optimal interleaving rank for a par-
ticular negative sample requires us to maximize the discrete
function fj(i) over the domain i ∈ {1, · · · , |P|} (or possibly
its subdomain). Yue et al. [6] use a simple linear algorithm
for this step, which takes O(|P|) time. In contrast, we pro-
pose a more efficient algorithm to maximize δj(·), which
exploits the special structure of this discrete function. This
will not bring improvement in the worst-case complexity but
it adds another speed-up and is interesting conceptually.

Before we describe our efficient algorithm in detail, we
require the definition of a unimodal function. A discrete
function f : {1, · · · , p} ← R is said to be unimodal if and
only if there exists a k ∈ {1, · · · , p} such that

f(i) ≤ f(i+ 1),∀i ∈ {1, · · · , k − 1},
f(i− 1) ≥ f(i),∀i ∈ {k + 1, · · · , p}. (7)

In other words, a unimodal discrete function is monotoni-
cally non-decreasing in the interval [1, k] and monotonically
non-increasing in the interval [k, p]. The maximization of a
unimodal discrete function over its domain {1, · · · , p} sim-
ply requires us to find the index k that satisfies the above
properties. The maximization can be performed efficiently,
in O(log(p)) time, using binary search.

We are now ready to state the main result that allows
us to compute the optimal interleaving rank of a negative
sample efficiently.

Proposition 5 The discrete function fj(i), induced by
∆AP , is unimodal in the domain {1, · · · , p}, where p =
min{|P|, j}.

The proof of the above proposition is provided in Ap-
pendix B.

Algorithm 3: Efficient search for the optimal interleav-
ing rank of a negative sample.

Input: {fj(i), i = 1, · · · , |P|}.
1 p = min{|P|, j}
2 Compute an interleaving rank i1 as

ii = argmax
i∈{1,··· ,p}

fj(i). (8)

3 Compute an interleaving rank i2 as

i2 = argmax
i∈{p+1,··· ,|P|}

fj(i). (9)

4 Compute the optimal interleaving rank optj as

optj =

{
i1 if fj(i1) ≥ fj(i2),
i2 otherwise.

(10)

Using the above proposition, the discrete function fj(i)
can be optimized over the domain {1, · · · , |P|} efficiently as
described in Algorithm 3. Briefly, our efficient search al-
gorithm finds an interleaving ranking i1 over the domain
{1, · · · , p}, where p is set to min{|P|, j} in order to ensure
that the function fj(·) is unimodal (step 2 of Algorithm 3).
Since i1 can be computed using binary search, the com-
putational complexity of this step is O(log(p)). Further-
more, we find an interleaving ranking i2 over the domain
{p + 1, · · · , |P|} (step 3 of Algorithm 3). Since i2 needs to
be computed using linear search, the computational com-
plexity of this step is O(|P| − p) when p < |P| and 0 other-
wise. The optimal interleaving ranking optj of the negative
sample xj can then be computed by comparing the values
of fj(i1) and fj(i2) (step 4 of Algorithm 3).

Note that, in a typical training dataset, the negative sam-
ples significantly outnumber the positive samples, that is,
|N | � |P|. For all the negative samples xj where j ≥ |P|,

8

Object class Binary svm ap-svm

Jumping 52.580 55.230
Phoning 32.090 32.630
Playing instrument 35.210 41.180
Reading 27.410 26.600
Riding bike 72.240 81.060
Running 73.090 76.850
Taking photo 21.880 25.980
Using computer 30.620 32.050
Walking 54.400 57.090
Riding horse 79.820 83.290

Table 1: Performance of Binary svm and ap-svm in terms
of ap on the test set for the different action classes of pas-
cal voc 2011 action dataset.

Binary svm ap-svm ap-svm-search ap-svm-select
0.1434 0.7154 0.0985 0.0625

Table 2: Computation time (in seconds) for computing the
most violated ranking when using the different methods. The
reported time is averaged over the training for all the action
classes.

p will be equal to |P|. Hence, the maximization of fj(·) can
be performed efficiently over the entire domain {1, · · · , |P|}
using binary search in O(log(|P|)) as opposed to the O(|P|)
time suggested in [6].

6 Experiments

We demonstrate the efficacy of our methods, described in
the previous section, on the challenging problems of action
classification and object detection.

6.1 Action Classification

Dataset. We use the pascal voc 2011 [20] action classi-
fication dataset for our experiments. This dataset consists
of 4846 images, which include 10 different action classes.
The dataset is divided into two parts: 3347 ‘trainval’ per-
son bounding boxes and 3363 ‘test’ person bounding boxes.
We use the ‘trainval’ bounding boxes for training since their
ground-truth action classes are known. We evaluate the ac-
curacy of the different instances of ssvm on the ‘test’ bound-
ing boxes using the pascal evaluation server.

Features. We use the standard poselet [16] activation fea-
tures to define the sample feature for each person bounding
box. The feature vector consists of 2400 action poselet ac-
tivations and 4 object detection scores. We refer the reader
to [16] for details regarding the feature vector.

Methods. We show the effectiveness of our methods for
both ap-svm and ndcg-svm. For ap-svm, we present re-
sults for the two different efficient methods proposed in this
paper. First, ap-svm-search, which uses efficient search

Binary svm ap-svm ap-svm-search ap-svm-select
1.872±0.057 16.294±0.180 2.323±0.200 1.482±0.385

Table 3: Computation time (in mili-seconds) for computing
the most violated ranking per iteration when using the differ-
ent methods. The reported time is averaged over all training
iterations and over all the action classes.

to compute the optimal interleaving rank for each nega-
tive sample using Algorithm 3. Second, ap-svm-select,
which uses the selective ranking strategy outlined in Algo-
rithm 2. We compare the results for our methods with that
of standard binary svm, which optimizes the 0-1 loss and
also the standard ap-svm, which uses the inefficient loss-
augmented inference described in [6]. For ndcg-svm, we
present results for ndcg-svm-select, which uses the selec-
tive ranking strategy outlined in Algorithm 2. We compare
the results for our method with that of standard binary svm
and also the standard ndcg-svm, which uses the inefficient
loss-augmented inference described in [8]. Note that, ap-
svm, ap-svm-search and ap-svm-select are guaranteed
to provide the same set of parameters since both efficient
search and selective ranking are exact methods. Similarly,
ndcg-svm-select is guaranteed to provide the same set
of parameters as ndcg-svm. The hyperparameters of all
methods are fixed using 5-fold cross-validation on the ‘train-
val’ set.

Results. Table 1 shows the ap for the rankings obtained
by binary svm and ap-svm for the ‘test’ set. Note that ap-
svm (and therefore, ap-svm-search and ap-svm-select)
consistently outperforms binary svm by optimizing a more
appropriate loss function during training. The time required
to compute the most violated rankings for each of the meth-
ods is shown in Table 2. Note that all the methods described
in this paper result in substantial improvement in training
time. The overall time required for loss-augmented infer-
ence is reduced by a factor of more than 10 compared to
the original ap-svm approach. It can also be observed that
though each loss-augmented inference step for binary svm is
comparable to that for ap-svm (Table 3), in some cases we
observe that we required more cutting plane iterations for
binary svm to converge. As a result, in those cases train-
ing binary svm is significantly slower than training ap-svm
with our proposed speed-ups.

Table 4 shows the mean ndcg for the rankings ob-
tained by binary svm and ndcg-svm on the ‘validation’
sets when we perform 5-fold cross-validation. Note that
ndcg-svm (and therefore, ndcg-svm-select) outperforms
binary svm in most cases by optimizing a more appropriate
loss function during training. The time required to compute
the most violated rankings for each of the methods is shown
in Table 5. The efficient method described in this paper re-
sults in substantial improvement in training time. The over-
all time required for loss-augmented inference is reduced by

9

a factor of more than 100 compared to the original ndcg-
svm approach. It can also be observed that loss-augmented
inference step for our version of ndcg-svm optimization is
significantly faster than that of binary svm.

In order to understand the effect of the size and com-
position of the dataset on our approaches, we perform 3
experiments with variable number samples for the action
class phoning. First, we vary the total number of samples
while having a constant positive to negative ratio of 1 : 10.
Second, we vary the number of negative samples while fix-
ing the number of positive samples to 227. Third, we vary
the number of positive samples while fixing the number of
negative samples to 200. As can be seen in Fig. 1 and Fig.
2, the time required to perform loss-augmented inference
is significantly lower for our methods for both ap-svm and
ndcg-svm.

Object class Binary svm ndcg-svm

Jumping 86.409 87.895
Phoning 73.134 76.733
Playing instrument 81.533 83.666
Reading 74.528 75.588
Riding bike 94.928 95.958
Running 93.766 93.776
Taking photo 74.058 76.701
Using computer 79.518 78.276
Walking 89.789 89.742
Riding horse 96.160 96.875

Table 4: Performance of Binary svm and ndcg-svm in
terms of ndcg on the validation set for the different action
classes of pascal voc 2011 action dataset. We conduct
5-fold cross-validation and report the mean ndcg over the
five validation sets.

Binary svm ndcg-svm ndcg-svm-select

0.1687 6.8019 0.0473

Table 5: Computation time (in seconds) for computing the
most violated ranking when using the different methods. The
reported time is averaged over the training for all the action
classes.

6.2 Object Detection

Dataset. We use the pascal voc 2007 [20] object detec-
tion dataset, which consists of a total of 9963 images. The
dataset is divided into a ‘trainval’ set of 5011 images and a
‘test’ set of 4952 images. All the images are labelled to indi-
cate the presence or absence of the instances of 20 different
object categories. In addition, we are also provided with
tight bounding boxes around the object instances, which we
ignore during training and testing. Instead, we treat the
location of the objects as a latent variable. In order to re-
duce the latent variable space, we use the selective-search

Binary svm ndcg-svm ndcg-svm-select

2.447±0.259 71.066±1.569 0.548±0.111

Table 6: Computation time (in mili-seconds) for computing
the most violated ranking per iteration when using the differ-
ent methods. The reported time is averaged over all training
iterations and over all the action classes.

algorithm [21] in its fast mode, which generates an average
of 2000 candidate windows per image.

Features. For each of the candidate windows, we use
a feature representation that is extracted from a trained
Convolutional Neural Network (cnn). Specifically, we pass
the image as input to the cnn and use the activation vector
of the penultimate layer of the cnn as the feature vector.
Inspired by the work of Girshick et al. [22], we use the cnn
that is trained on the ImageNet dataset [23], by rescaling
each candidate window to a fixed size of 224 × 224. The
length of the resulting feature vector is 4096.

Methods. We train latent ap-svms [24] as object de-
tectors for 20 object categories. In our experiments, we
determine the value of the hyperparameters using 5-fold
cross-validation. During testing, we evaluate each candidate
window generated by selective search, and use non-maxima
suppression to prune highly overlapping detections.

Results. This experiment places high computational de-
mands due to the size of the dataset (5011 ‘trainval’ im-
ages), as well as the size of the latent space (2000 candidate
windows per image). We compare the computational effi-
ciency of the loss-augmented inference algorithm proposed
in [6] and the exact methods proposed by us. The total time
taken for loss-augmented inference during training, averaged
over the all the 20 classes, is 0.5214 sec for our efficient ex-
act methods (search+select) which is significantly better
than the 7.623 sec taken by the algorithm used in [6].

7 Discussion

We provided a characterization of ranking based loss func-
tions that are amenable to a quicksort based optimization
algorithm for obtaining the corresponding most violated
constraint. We proved that the quicksort flavored algo-
rithm provides a better computational complexity than the
state of the art methods for AP and NDCG loss functions.
Furthermore, we established that the complexity of our al-
gorithm cannot be improved upon asymptotically by any
comparison based method. We empirically demonstrated
the efficacy of our approach on two challenging real world
problems—action classification and object detection—using
standard publicly available datasets.

In theory, our approach can readily be used in conjunction
with other learning frameworks, such as the popular deep
convolutional neural networks. A combination of methods

10

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of total samples −−>

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

 −
−

>

Binary SVM

AP−SVM

AP−SVM−SEARCH

AP−SVM−SELECT

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No. of negative samples −−>

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

 −
−

>

Binary SVM

AP−SVM

AP−SVM−SEARCH

AP−SVM−SELECT

20 40 60 80 100 120 140 160 180 200 220
0

0.01

0.02

0.03

0.04

0.05

0.06

No. of positive samples −−>

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

 −
−

>

Binary SVM

AP−SVM

AP−SVM−SEARCH

AP−SVM−SELECT

Figure 1: Computation time for solving all the loss augmented inference problems during the complete training of the Binary
svms and ap-svms, while the no. of total, negative and positive samples are varied.

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

5

10

15

No. of total samples −−>

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

 −
−

>

Binary SVM

nDCG−SVM

nDCG−SVM−SELECT

500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

20

No. of negative samples −−>

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

 −
−

>

Binary SVM

nDCG−SVM

nDCG−SVM−SELECT

20 40 60 80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No. of positive samples −−>
C

o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

 −
−

>

Binary SVM

nDCG−SVM

nDCG−SVM−SELECT

Figure 2: Computation time for solving all the loss augmented inference problems during the complete training of the Binary
svms and ndcg-svms, while the no. of total, negative and positive samples are varied.

proposed in this paper and the speed-ups proposed in [25]
may prove to be effective in such a framework. The efficacy
of optimizing ranking based loss functions efficiently using
other frameworks needs to be empirically evaluated. An-
other computational bottleneck of all rank SVM frameworks
is the computation of the joint feature vector. An interest-
ing direction of future research would be to combine our
approaches with those of sparse feature coding [26, 27, 28]
to improve the speed to rank SVM learning further.

A Proofs of observations from Sec-
tion 4

In this part of the appendix we will prove Observations 1-4
from Section 4.

Lemma 6 The joint feature vector Ψ(X,R) decomposes
into contributions of negative and positive samples as fol-

lows:

Ψ(X,R) =
1

|P| |N |
∑
x∈P

∑
y∈N

Rx,y(ψ(x)− ψ(y))

=
∑
x∈P

c(x)ψ(x) +
∑
y∈N

c(y)ψ(y),

where

c(x)=
|P|+ 2−2rank(x)

|P| |N |
, c(y)=

|N |+ 2−2rank(y)

|P| |N |
.

In particular, assuming already that {s+i } is sorted, and
that R is induced by a vector r ∈ R, one has

wTΨ(X,R) =

|P|∑
i=1

c+i s
+
i +

|N |∑
j=1

c−j s
∗
j ,

where

c+i =
|P|+ 2− 2r+i
|P| |N |

, c−j =
|N |+ 2− 2rj
|P| |N |

.

Here r+i stands for the interleaving rank of the i-th positive
sample, which can be computed as r+i = 1 + |{j : rj ≤ i}|.

11

Observation 1 There exists an optimal solution R̂ of (5)
in which the positive samples appear in the descending order
of their scores si and also the negative samples appear in
descending order of their scores.

Proof. Let R be any optimal solution and let R̂ be a ranking
with the same ±-pattern as R but both negative and posi-
tive samples sorted decreasingly by their scores. Then due
to (C1) we have ∆(R∗,R) = ∆(R∗, R̂). It remains to check
that wTΨ(X,R) does not decrease if we swap in R two
samples x, y ∈ P with ind(x) < ind(y) and s(x) < s(y) (it
boils down to ac+bd ≥ ad+bc for a ≥ b ≥ 0 and c ≥ d ≥ 0).
Since similar argument applies for negative samples one can
perform swaps in R until reaching R̂ without decreasing the
value of the objective. �

Observation 2 Assume we are given a vector r ∈ R and
an array {s∗∗j } which is a rearrangement of the array {s−j }
in which s∗∗i > s∗∗j whenever ri < rj. Then we can compute
the entire output of the algorithm, that is the vector c as well
as the value ∆(R∗,Rr) in time O(|N | + |P|). Moreover,
the mapping that produces vector c given the vector r is
injective.

Proof. Note that the interleaving ranks for negative samples
determine the ±-pattern of the sought ranking Rr. More-
over this ±-pattern can be constructed in one pass over {rj}
and by (C1) the loss ∆(R∗,Rr) can be computed from it,
all that in O(|N |+ |P|) time. It remains to find the coeffi-
cients {c+i } and {c−i }. But since c−i = c−j whenever ri = rj
the coefficient c−i (of the score s∗i) can be also associated
with the score {s∗∗i }. Computing {c+i } from {c−i } takes also
O(|P|+ |N |) time by Lemma 6. It is also clear that already
the coefficients {c−i } are uniquely determined by r hence the
mapping is indeed injective. �

Observation 3 There are functions fj : {1, . . . , |P|+ 1} →
R for j = 1, . . . , |N | such that for a proper ranking R which
corresponds to some vector r ∈ R the objective function (5)
can be written as

|N |∑
j=1

fj(rj),

where the functions fj inherit property (C3) and provided
the value of s∗j also the property (C4). In particular, given
s∗j we can compute all the values of fj(i) for l ≤ i ≤ r in
O(r − l) time.

Proof. We can use that the array {s+i } is sorted to write
the decomposition from Lemma 6 also as

wTΨ(X,R)

=
1

|N | |P|
wT

∑
y∈N

(
c(y)ψ(y) +

∑
x∈P

Rx,yψ(x)

)

=
1

|N | |P|

|N |∑
j=1

(|P|+2−2rj)s
∗
j+2

rj−1∑
i=1

s+i −
|P|∑
i=1

s+i

 .

This, in combination with (C2), defines the functions fj for
j = 1, . . . , |N |. As for the conditions (C3) and (C4), we
have

fj(i+ 1)− fj(i) =
2(s+i − s∗j)
|N | |P|

.

Now (C3) reduces to the obvious s∗j+1 ≤ s∗j and indeed
knowing s∗j implies constant-time evaluation. �

Observation 4 (Correctness of greedy approach) If
i < j, then opti ≤ optj. In other words opt ∈ R.

Proof. Recall that optj is the highest rank with maximal
value of the corresponding fj′ . It suffices to prove that for
ij+1 = max argmax fj+1 and ij = max argmax fj , we have
ij+1 ≥ ij . Since by Observation 3 we can compare the dis-
crete derivatives of fj and fj+1, all left to do is to formalize
the discrete analogue of what seems intuitive for continuous
functions.

Assume ij+1 < ij . Then since

fj+1(ij)− fj+1(ij+1) =

ij−1∑
i=ij+1

fj+1(i+ 1)− fj+1(i)

≥
ij−1∑
i=ij+1

fj(i+ 1)− fj(i)

= fj(ij)− fj(ij+1) ≥ 0,

we obtain that ij ∈ argmax fj+1 and as ij > ij+1 =
max argmax fj+1 and we reached the expected contradic-
tion. �

Remark 1 Observation 4 is not true for ∆NDCG with func-
tion D(i) taken from [8] as

D(i) =

{
1 1 ≤ i ≤ 2

1/ log2(i) i > 2
.

Proof. Consider negative samples x1 and x2 and a positive
sample x3 with scores s1 = 3ε, s2 = ε, s3 = 5ε, where ε > 0
is small.

Note that the NDCG loss of a ranking R reduces to
∆NDCG(R∗,R) = 1 − D(ind(x3)) where we used the fact
that D(1) = 1.

The decomposition ∆NDCG(R∗,R) = δ1(r1) + δ2(r2)
holds if we set

δ1(1) = δ2(1) = 0,

δ2(1) = D(2)−D(3),

δ1(2) = D(1)−D(2) = 0

12

and (possibly by looking at the proof of Observation 3)
we also find values of f1 and f2 as

f1(1) =
1

2
(s1 − s3) + δ1(1) = −ε < ε

=
1

2
(s3 − s1) + δ1(2) = f1(2)

f2(1) =
1

2
(s2 − s3) + δ2(1) = −2ε+D(2)−D(3) > 2ε

=
1

2
(s3 − s2) + δ2(2) = f2(2).

Hence opt1 = 2 > 1 = opt2, a contradiction.
�

B Properties of ∆AP and ∆NDCG

In this place, let us prove the aforementioned properties of
∆AP and ∆NDCG.

Proposition 7 ∆NDCG is QS-suitable.

Proof. The property (C1) is immediate. For the others, let
us first verify that the functions δj can be set as

δj(i) =
1

C
(D(i+ j − 1)−D(|P|+ j)) ,

where C =
∑|P|
i=1D(i). Indeed, one can check that

∆(R∗,R)

= 1−
∑

x∈P D(ind(x))∑|P|
i=1D(i)

=
1

C

|P|∑
i=1

D(i)−
∑
x∈P

D(ind+(x) + rank(x)− 1)

=
1

C

∑
x∈N

D(ind−(x)+rank(x)−1)−D(|P|+ind−(x))

=
∑
x∈N

δind−(x)(rank(x))

as desired. As for (C3) and (C4), let us realize that

δj(i+ 1)− δj(i) =
1

C
(D(i+ j)−D(i+ j − 1)) .

Then (C4) becomes trivial and checking (C3) reduces to

D(i+ j + 1) +D(i+ j − 1) ≥ 2D(i+ j)

which follows from convexity of the function D. �

Proposition 8 ∆AP is QS-suitable.

Proof. Again, the property (C1) goes without saying. The
functions δj were already identified in [6] as

δj(i) =
1

|P|

|P|∑
k=i

(
j

j + k
− j − 1

j + k − 1

)

so after writing

δj(i+ 1)− δj(i) =
j − 1

j + i− 1
− j

j + i

we again have (C4) for free and (C3) reduces to

2gi(j) ≥ gi(j − 1) + gi(j + 1),

where gi(x) = x
x+i , and the conclusion follows from concav-

ity of gi(x) for x > 0. �
In the rest of this section we focus on proving the uni-

modality stated in Proposition 5.

Proposition 5 (Restated) The discrete function fj(i),
induced by ∆AP , is unimodal in the domain {1, · · · , p},
where p = min{|P|, j}.

Let us first state the following lemmas, which easily lead
to the proposition. Knowing the form of δj(i) for ∆AP from
previous paragraphs, we may split the summand term in the
summation fj(i) as follows:

fj(i) =

|P|∑
k=i

g1 (j, k) +

|P|∑
k=i

g2 (j, k)− Cj ,

where

g1 (j, k) =
1

|P|

(
j

j + k
− j − 1

j + k − 1

)
g2 (j, k) = −

2
(
s+k − s∗j

)
|P| |N |

Cj =

|P|∑
k=1

g2 (j, k)

Lemma 6 For k < j, g1(j, k) monotonically decreases with
decreasing k, that is ∀ k < j g1(j, k − 1) ≤ g1(j, k).

Proof. For j ≥ 1 and k ≥ 1, (j + k) > j ⇒ j(j + k)− (j +
k) < j(j+k)−j ⇒ j

j+k >
j−1
j+k−1 . So, term g1(j, k) > 0 for

all k ≥ 1. It can also be verified that the function g1(j, k) is 0
at 0 and has a single maxima for k ∈ <+, at k =

√
j(j − 1).

From this we can conclude that for discrete k ∈ Z+, g1(j, k)
would have maximum value either at k = j or k = j − 1.
Therefore, for k < j, g1(j, k) would monotonically decrease
with decreasing k. �

Lemma 7 For k < j, g2(j, k) monotonically decreases with
decreasing k, that is ∀ k < j g2(j, k − 1) ≤ g2(j, k).

Proof. In g2(j, k), the negative score s∗j is a constant for

a given j. Whereas, the positive scores s+k being sorted
in descending order, monotonically increase as k decreases.
Therefore, g2(j, k) which is −s+k + constant, monotonically
decreases as k decreases. �

13

Proof of Proposition 5: From Lemmas 6 and 7, for k < j,
g1(j, k) and g2(j, k) monotonically decreases with decreas-
ing k. As a result, g1(j, k) + g2(j, k) also monotonically
decreases when k is decreased from right to left of the
number line. Here, there can be 3 scenarios,

(i) (g1(j, 1) + g2(j, 1)) ≥ 0. In this case, as the function is
monotonic and decreases towards left,

(g1(j, i) + g2(j, i)) ≥ 0, for i ∈ {1, 2, ..., j}
⇒ fj(i)− fj(i+ 1) ≥ 0, for i ∈ {1, 2, ..., }
⇒ fj(i) ≥ fj(i+ 1), for i ∈ {1, 2, ..., }

Therefore, according to definition of unimodality, fj(i)
would be unimodal with k = 1.

(ii) (g1(j, j − 1) + g2(j, j − 1)) ≤ 0. In this case, using sim-
ilar reasoning as above,

(g1(j, i) + g2(j, i)) ≤ 0, for i ∈ {j − 1, ..., 1}
⇒ fj(i)− fj(i+ 1) ≤ 0, for i ∈ {j − 1, ..., 1}
⇒ fj(i) ≤ fj(i+ 1), for i ∈ {j − 1, ..., 1}

Therefore, fj(i) would be unimodal with k = j − 1.

(iii) (g1(j, 1) + g2(j, 1)) ≤ 0 and at the same time
(g1(j, j − 1) + g2(j, j − 1)) ≥ 0. In this case, there
should exist a point across which the function (g1 + g2)
changes its sign from positive to negative when moving
from right to left. In other words, there should exist
k ∈ 1, 2, . . . , j − 1, such that,

(g1(j, i) + g2(j, i)) ≥ 0, i ∈ {k + 1, ..., j}
(g1(j, i) + g2(j, i)) ≤ 0, i ∈ {1, ..., k}

⇒ fj(i)− fj(i+ 1) ≥ 0, for i ∈ {k, ..., j − 1}
fj(i)− fj(i+ 1) ≤ 0, for i ∈ {j − 1, ..., 1}

⇒ fj(i) ≥ fj(i+ 1), for i ∈ {k, ..., j − 1}
fj(i) ≤ fj(i+ 1), for i ∈ {j − 1, ..., 1}

Here too, fj(i) satisfies the conditions for unimodality
with k being the maximum point.

In all the 3 of the exhaustive cases, fj(i) satisfies the
conditions for unimodality. Hence, fj(i) is unimodal in the
region {1, 2, . . . , j − 1}. As a function which is unimodal in
a certain region would also be unimodal in a subset of the
region, fj(i) is unimodal in the region {1, 2, . . . , p}, where,
p = min(|P|, j). �

Acknowledgments

This work is partially funded by the European Research
Council under the European Community’s Seventh Frame-
work Programme (FP7/2007-2013)/ERC Grant agreement

number 259112. Pritish is supported by the TCS Research
Scholar Program.

Michal and Vladimir are funded by the European Re-
search Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013)/ERC grant agree-
ment no 616160.

References

[1] Y. Lin, Y. Lee, and G. Wahba, “Support vector ma-
chines for classification in nonstandard situations,” Ma-
chine learning, 2002.

[2] K. Morik, P. Brockhausen, and T. Joachims, “Com-
bining statistical learning with a knowledge-based ap-
proach: a case study in intensive care monitoring,”
Technical Report, SFB 475: Komplexitätsreduktion
in Multivariaten Datenstrukturen, Universität Dort-
mund, Tech. Rep., 1999.

[3] B. Bartell, G. Cottrell, and R. Belew, “Automatic com-
bination of multiple ranked retrieval systems,” in Pro-
ceedings of the 17th annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, 1994.

[4] A. Herschtal and B. Raskutti, “Optimising area under
the roc curve using gradient descent,” in Proceedings
of the twenty-first international conference on Machine
learning. ACM, 2004.

[5] R. Caruana, A. Niculescu-Mizil, G. Crew, and
A. Ksikes, “Ensemble selection from libraries of mod-
els,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004.

[6] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A
support vector method for optimizing average preci-
sion,” in SIGIR, 2007.

[7] C. Quoc and V. Le, “Learning to rank with nonsmooth
cost functions,” in NIPS, 2007.

[8] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhat-
tacharyya, “Structured learning for non-smooth rank-
ing losses,” in KDD, 2008.

[9] B. Taskar, C. Guestrin, and D. Koller, “Max-margin
Markov networks,” in NIPS, 2003.

[10] I. Tsochantaridis, T. Hofmann, Y. Altun, and
T. Joachims, “Support vector machine learning for in-
terdependent and structured output spaces,” in ICML,
2004.

[11] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural
networks for object detection,” in NIPS, 2013.

14

[12] D. Kim, “Minimizing structural risk on decision tree
classification,” in Multi-Objective Machine Learning.
Springer, 2006.

[13] C. Shen, H. Li, and N. Barnes, “Totally correc-
tive boosting for regularized risk minimization,” arXiv
preprint arXiv:1008.5188, 2010.

[14] T. Joachims, “A support vector method for multivari-
ate performance measures,” in ICML, 2005.

[15] P. Mohapatra, C. V. Jawahar, and M. P. Kumar, “Effi-
cient optimization for average precision svm,” in NIPS,
2014.

[16] S. Maji, L. Bourdev, and J. Malik, “Action recognition
from a distributed representation of pose and appear-
ance,” in CVPR, 2011.

[17] T. Joachims, T. Finley, and C. Yu, “Cutting-plane
training for structural SVMs,” JMLR, 2009.

[18] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cot-
ter, “Pegasos: Primal estimated sub-gradient solver for
SVM,” Mathematical Programming, 2011.

[19] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free
sparse convex optimization,” in ICML, 2013.

[20] M. Everingham, L. Van Gool, C. Williams, J. Winn,
and A. Zisserman, “The PASCAL visual object classes
(VOC) challenge,” IJCV, 2010.

[21] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeul-
ders, “Selective search for object recognition,” IJCV,
2013.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik,
“Rich feature hierarchies for accurate object detection
and semantic segmentation,” in CVPR, 2014.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in CVPR, 2009.

[24] A. Behl, C. V. Jawahar, and M. P. Kumar, “Optimiz-
ing average precision using weakly supervised data,” in
CVPR, 2014.

[25] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding
up convolutional neural networks with low rank expan-
sions,” in BMVC, 2014.

[26] X. Boix, G. Roig, C. Leistner, and L. Van Gool,
“Nested sparse quantization for efficient feature cod-
ing,” in ECCV, 2012.

[27] T. Ge, Q. Ke, and J. Sun, “Sparse-coded features for
image retrieval,” in BMVC, 2013.

[28] J. Yang, K. Yu, and T. Huang, “Efficient highly over-
complete sparse coding using a mixture model,” in
ECCV, 2010.

15

	1 Introduction
	2 Background
	2.1 The Rank SVM Framework
	2.2 Loss Functions
	2.3 State of the Art

	3 Our Contributions
	4 Quicksort Flavored Optimization
	4.1 QS-Suitable Loss Functions
	4.2 Key Observations for QS-Suitable Loss
	4.3 Divide and Conquer
	4.4 Computational Complexity
	4.5 Lower Bound on Complexity

	5 Additional Optimization for AP Loss
	6 Experiments
	6.1 Action Classification
	6.2 Object Detection

	7 Discussion
	A Proofs of observations from Section ??
	B Properties of AP and NDCG

