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Abstract

We present efficient implementations of two primitives for data
mapping and distribution on the massively multithreaded architec-
ture of the GPUs in this paper. The split primitive distributes el-
ements of a list according to their category. Split is an important
operation for data mapping and is used to build data structures,
distribute work load, etc., in a massively parallel environment.
The gather/scatter primitive performs fast, distributed data move-
ment. Efficient data movement is critical to high performance on
the GPUs as suboptimal memory accesses can pay heavy penalties.
The split we implement is a generalization of the binary split [Blel-
loch 1990] and is implemented using the shared memory and the
atomic operations available on them. The split performance scales
logarithmically with the number of categories, linearly with the list
length, and linearly with the number of cores on the GPU. This
makes it useful for applications that deal with large data sets. We
also present a variant of split that partitions the indexes of records.
This facilitates the use of the GPU as a coprocessor for split or sort,
with the actual data movement handled separately. We can compute
the split indexes for a list of 32 million records in 180 milliseconds
for a 32-bit key and in 800 ms for a 96-bit key. The instantaneous
locality of memory references play a critical role in data movement
on the current GPU memory architectures. For scatter and gather
involving large records, we use collective data movement in which
multiple threads cooperate on individual records to improve the in-
stantaneous locality. The split, gather, and their combinations find
many applications and expect our primitives will be used by fu-
ture GPU programmers. We show sorting of 16 million 128-byte
records in 379 milliseconds with 4-byte keys and in 556 ms with
8-byte keys.

1 Introduction

The Graphics Processor Unit (GPU) has been increasingly used for
a wide range of problems involving heavy computations in graph-
ics, computer vision, science, etc. The main attraction is the high
computation power per unit cost; today’s off-the-shelf GPUs deliver
1 TFLOPs of single precision power for under $400. The program-
ming model available on them have also become general purpose
with the advent of CUDA [Nvidia 2008] and the newly-adopted
standard of OpenCL [Khronos 2009]. However, extracting the best
performance from the GPU requires a deep knowledge of its inter-
nal architecture including the core layout, memory, scheduling, etc.
A lot of this information is not publicly available; the architecture
also changes much more frequently than the architecture of multi-
core microprocessors.

One way to exploit the GPU’s computing power effectively is
through high level primitives upon which other computations are
built. All architecture specific optimizations can be incorporated
into the primitives by designing and implementing them carefully.
An application can gain high performance if its computationally in-
tensive parts can be broken down into such primitives. The map-
reduce primitive has recently been very effective in distributing
compute intensive applications to a cluster of processors [Dean and
Ghemawat 2004]. GPUs essentially follow the data parallel model

in which kernels of code are applied on many data elements in
parallel. Blelloch defined several data parallel primitives includ-
ing scan, reduce, and binary split [Blelloch 1989; Blelloch 1990].
Sengupta et al. implemented these primitives on the GPU under
CUDA [Sengupta et al. 2007] which has been made available under
the CUDPP libarary [Harris et al. 2007]. Several applications have
been built using these primitives including kd-trees [Zhou et al.
2008], octrees [Zhou et al. April, 2008], BVH trees [Lauterbach
et al. 2009], etc.

In this paper, we present efficient and scalable implementations of
two data mapping primitives with wide applications on the GPU.
Data mapping and distribution are used in distributed applications
for data structure building, load balancing, etc. We present the split
primitive that distributes data elements based on a category each
belongs to. This is a generalization of the binary split and has been
found to be critical for all throughput computing [Siggraph Asia
Courses 2008]. We also define index-variants of split that defer the
actual data movement, which is useful to handle bulky data records.
We also present efficient implementations of the scatter and gather
primitives on the GPU that work in conjunction with the index-
variants of split. The separation of index computation from data
movement enables the use of the GPU as a fast co-processor for
split and sort, with data movement handled separately. The GPU
performance is highly sensitive to memory access patterns; subop-
timal implementation can pay heavy penalty. Optimized primitives
are basic building blocks using which many regular and irregular
applications can be built.

The main contributions of this paper are the following:

1. We present efficient and scalable implementations of the split
and split-index primitives for the GPU. These can be used to
split a list to its category or to sort a list of numbers. We can
split 32 million numbers using a 16 bit key and 32 bit index
value in 91 ms and a 96 bit key and 32 bit index value in 804
ms. We can compute the split-index for 64 million records
with 32-bit keys in 350 milliseconds.

2. We improve and exploit the instantaneous locality of mem-
ory references to improve the data movement performance on
the GPU. The coherence in memory access between different
compute elements is critical to memory performance on the
GPUs, like caching on the CPUs.

3. We present efficient implementaiton of the gather and scatter
primitives for fast data movement within the GPU, taking ad-
vantage of the instantaneous locality of memory references.
We can randomly scatter 16 million 128-byte records in about
290 milliseconds and 8 million 256-byte records in under 150
ms.

4. We show a few applications of the split and gather primitives.
We can sort 128 million 32-bit numbers in about 650 mil-
liseconds, 128 million 64-bit numbers in about 1.5 seconds
and 128 million 128-bit numbers in about 4 seconds. Sort-
ing large records maps to a split-index followed by a gather.
We show sorting of 16 million 128-byte records in 379 mil-
liseconds with 4-byte keys and in 556 ms with 8-byte keys.
We also discuss how these primitives can be used to build dis-
tributed data structures for applications like ray tracing and



surface reconstruction.

2 Related Work

Blelloch defined split as a data parallel primitive along with scan,
reduce, etc. [Blelloch 1989]. He also proposed an implementation
of radix sort using 1-bit split operation. Split is used with scan
operations to sort data one bit at a time. Integer sorting is performed
by iterating over all the bits of the integer. Harris et al. [Harris
et al. 2007] provide a GPU implementation of the technique using
CUDA.

Split was implemented on the GPU by He et al. [He et al. 2008].
They built a per-thread histogram on the GPU to overcome the
problem of concurrent writes by multiple threads. They used split
as a primitive for implementing a variety of relational join opera-
tions for databases on the GPU. Their approach is limited by the
available shared memory and limits the number of bins per pass to
64 on current GPUs.

Several sorting algorithms are available for the GPUs. Bitonic
sort was first implemented by Purcell et al. [Purcell et al. 2005].
Govindaraju et al. [Govindaraju et al. 2006] demonstrated improved
sorting performance for external sorting algorithm using graphics
processors on large databases. Their implementation of bitonic
sort used programmable pixel shaders with OpenGL. Kaatz [Kaatz
2008] implemented bitonic sort on the GPU using CUDA. Harris
et al. [Harris et al. 2007] implement a bit-wise radix sort approach
using CUDA. They partition the data based on a bit starting from
least significant bit and moving towards most significant bit. Satish
et al. [Satish et al. 2009] provide a merge sort implementation. Ce-
derman et al. [Cederman and Tsigas 2008] describe a quick sort
based approach for sorting large data on the GPU.

Satish et al. [Satish et al. 2009] extended the radix sort to sort the
data to 4 bits at a time compared to 1 bit earlier. They load blocks
of data to shared memory and perform 4 rounds of 1-bit sorting in
the shared memory. These partially sorted values are then sorted
completely using the approach similar to He et al. [He et al. 2008].
They sort 16 million 32-bit key-value pairs in 110 msec. Our ap-
proach gives better results for sorting 32-bit and extend to 64-bit
and 128-bit sorting on the GPU.

3 Split and Split-Index Primitives

Split can be defined as appending each input record x to
a list of the category (or bin) it belongs to, or performing
append(x, List[category(x)]). List[i] holds all records of cat-
egory i. Split is a function that partitions an input relation into a
number of categories. A record could also be part of multiple cate-
gories, resulting in non-disjoint partitions and an increased size of
the output relation. Such multi-splits can be handled by placing
records in multiple lists. We consider the problem of splitting an
N -element list to M categories or bins. The basic split algorithm
is given in Algorithm 1.

Algorithm 1 Split Operation

1: Read the records and compute the counts for each category.
2: Compute the prefix sum of the counts to get the starting index

of each category in the output list.
3: Read each record, compute its index within its category and

write the record to the output using the index.

Steps 1 and 3 can have clashes when records are processed in par-
allel. Data parallel computing models (such as the GPU’s) exam-
ine multiple records simultaneously using multiple threads and can
clash while counting (Step 1) and while computing own index (Step
3). Efficient primitives for prefix sum (Step 2) avoid clashes [Blel-
loch 1990; Sengupta et al. 2007]. The global memory atomic oper-
ations available on the GPU can be used to keep the counts in the
global memory. This needs O(N) memory for the list and O(M)
for the counts in the global memory. This, however, incurs severe
performance penalty due to the clashes as well as the slower ac-
cess times of the global memory. He et al. use a private copy of
the count for each thread in the shared memory [He et al. 2008].
The memory requirements is O(BTM) in the global memory and
O(TM) in the shared memory, where B is the number of blocks
used and T is the number of threads per block. The shared memory
requirement limit the number of categories they can handle.

3.1 Split Using Shared Memory Atomics

The current generation of GPUs support fast atomic operations on
the shared memory. Our split implementation uses them for index
computations. Each block processes a segment of K input records
using its threads. The threads work in parallel, with each handling
several records sequentially. Each block uses one copy of the his-
togram efficiently using the limited shared memory. The counts
of each block are written to the global memory in a column-major
order into an array of size BM as done by He et al. [He et al. 2008].������ ���	 
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Figure 1: Each CUDA block processes a segment of input records.
The counts for each category is in the shared memory and is written
back in column-major order to global memory. A prefix sum of it is
loaded back to each block as the starting index of each category for
its share.

The prefix sum is computed over them in Step 2. The prefix sums
are read into the block in column-major order (Figure 1). Each
thread goes over its segment, computes its index using shared mem-
ory atomic operations and writes it to the final location. Global
memory required by the algorithm is O(BM) for working and an
O(N) to keep the output. In place split is not possible due to the
unpredictable scatter in writing (Step 3).

The writing step involves a general scatter of the records. The writ-
ing step takes about 90% of the total time if implemented as de-
scribed above [Patidar and Narayanan 2009]. Writing to widely
separated global memory locations is very inefficient on the GPUs.
The GPU performs coalesced memory operations well. Coalescing
is a dual concept of caching on uniprocessors. Caching improves



the performance in the presence of temporal locality in memory ac-
cesses by the same thread. Coalescing improves the performance
when there is instantaneous locality in the memory references by
a block of consecutive threads, as the accesses are combined into a
minimum number of expensive memory transactions. Completely
coalesced reads can be a factor 50-100 times faster than a totally
random read on current GPUs.
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Figure 2: Time taken to scatter data on the global memory. Data
is scattered to various output range given on x-axis of the graph.

The range of the destination index of each record is the length N of
the list in general. The expected value of the instantaneous locality
is clearly inversely proportional to the range (Figure 2). We im-
prove the writing speed by performing a two-step scatter operation
as given in Algorithm 2. Step 3 splits each record within the seg-
ment of records handled by the corresponding CUDA block (Figure
3).

Figure 3: The records of a CUDA block are first locally split, fol-
lowed by a copy to the final location. The instantaneous locality is
better for local split than the global split. The final copy has data
moving in groups and has high instantaneous locality.

For this, the local index of each record within its segment is calcu-
lated by each thread and the record is written to a temporary list in
the global memory at that index. This is a scatter with a range of
K, the number of items handled by a block. The range is shorter as
K is much smaller than N , resulting in a better instantaneous lo-
cality than global scatter. In Step 4, threads of a CUDA block read
the records from this temporary list, calculates their final indexes,
and copies the data to the final location. On the average, K

M
records

map to the same category. They will be in consecutive positions
in the temporary list as well as in the final list (Figure 3). High
degree of instantaneous locality is ensured in Step 4 if consecutive
threads handle consecutive records of the temporary list, if K is
significantly smaller than M . The 4 step split algorithm is given in
Algorithm 2.

For N = 16 million, M = 256 and K = 8192, the 2-step scatter
takes 14 milliseconds, with Step 3 taking 12 ms and Step 4 the rest.

Algorithm 2 BasicSplit

1: Load the elements of the segment sequentially in each thread.
Compute the count for each category per CUDA block using
hardware atomic operations on the shared memory.
– Store them in column major order in blockCount
– Scan of the count in shared memory and store in localScan

2: Scan the blockCount array, giving the starting index of each bin
for each block in globalScan

3: Split the segment locally using ordered atomics and store in
localSplit.

4: Scatter localSplit to full range of output array by computing the
global scatter index using globalScan and localScan

The single step scatter on the same data takes 24 milliseconds. The
significant speed up is due to the improved instantaneous locality in
the local split operation and the high instantaneous locality in the
final copy operation.

3.2 Scaling in Number of Categories

Algorithm 2 can only split to a small number of bins due to the
small amount of shared memory (16 KB) available on current
GPUs. With given shared memory, maximum number of categories
is 2048. Overuse of shared memory for 2048 bins results in un-
derutilization of the GPU (Figure 4). Figure 4 shows 8 bit split is
optimal for the given resources.
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Figure 4: Timings for the basic split step for 16 million elements
for different number of categories/bins.

We split to larger number of bins by handling the category numbers
8-bits at a time iteratively. We split using the right-most 8 bits as
the category in the first step, followed by a split using the next 8 bits
as the category, etc., until all bits of the category number are used
up. This is similar to radix sort using the least-significant digit. The
general algorithm to split to 2m categories is given in Algorithm 3.

Algorithm 3 Split (m)

1: For j = 0 to dm/8e do
2: Invoke BasicSplit using bits 8j:(8j + 7) as the category

The above algorithm works correctly only if the BasicSplit algo-
rithm is stable, i.e., maintains the original ordering of records that
have the same key value. Since the order of the segments in Basic-
Split is same as that of the blocks, the original ordering of records



with the same key in multiple segments will be preserved automat-
ically. The ordering of records within the same segment (and hence
handled in parallel by threads of a CUDA block) depends on the in-
dex given to it in Step 3 of Algorithm 2. The index depends on how
clashes are resolved in the shared memory atomic operations. As
records within a segment are assigned monotonically as the thread
IDs within the block, we need the clashes resolved in favour of the
lowest numbered clashing thread. Such operations can be called or-
dered atomic operations. The shared memory atomic operation on
present GPUs cannot ensure any specific ordering as implemented.

We use a simulated ordered-atomic increment operation to calculate
the index of each record in Step 3 of Algorithm 2. A thread-serial
realization of the atomic operation is used as given in Appendix A.
Correct results are obtained only when a CUDA block has exactly
32 threads and consequently, the simulated ordered atomics are 8-
10 times slower than hardware atomics.

3.3 Splitting Index Values

Split is often performed on database records that are large in size.
Reading and copying of the bulky records can be inefficient and
wasteful, especially if split is performed in multiple steps. We can
split the indexes of the records instead of the records themselves
in such situations. The index values are less than the length N of
the list. A 32-bit number can store the indexes of a list of 4 bil-
lion records, which is sufficient for most problems today. Splitting
of the indexes reduces to splitting a new record consisting of the
original key value and the 32-bit index value. After the split, the
index part of the records will contain the index in the original list
for each position. A gather applied to the original list using these
indexes will split the input list. The actual data movement may not
be needed in many cases as only some records of the split list are
needed. For instance, only records of a few select categories may be
needed after a split on a database table. Costly data movement can
be avoided by accessing only the required records using the index
values.
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Figure 5: Scatter times for various sizes of the list. Time taken to
scatter lists of size greater than 8M is higher than that of sorting
them using key-index pairs and performing the scatter.

Split operation are also performed for calculating gather index or
scatter index. These index can then be used later for addressing the
new locations. BasicSplit algorithm outputs gather index. Gather
index can be converted to scatter index by performing a scatter.
Figure 5 shows that time to scatter lists of size greater than 8M
is more expensive than using split to rearrange them. Gather index

can be converted to scatter index by using a variant of split primitive
which sorts key-index pairs.
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Figure 6: Time taken for computing Gather and Scatter Index for
various sizes of the list. Split Algorithm produces Gather Index by
default. A scatter is required for calculating the Scatter Index.

Figure 5 shows that for list sizes greater than 8 million, we can
perform SplitSort to calculate the scatter index which is faster than
a random scatter of the list. Figure 6 gives timings for computing
scatter and gather index for different list sizes. Scatter index are
computing by performing SplitSort on gather index and a new 32-
bit index, ranging from 0 to number of elements.

3.4 Split Primitives on the GPU
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Figure 7: Record, key, and start bit for split primitives

Split is very useful in distributed data mapping. Efficient split can
be a basic building block to many applications and has a role as a
fundamental primitive, like scan and reduce [Harris et al. 2007]. We
provide efficient implementations of the following split primitives.

1. split8(list[], rSz, sBt): The basic function to split the list of
records of size rSz bytes to 256 bins starting with bit num-
ber sBt from the left of the start of the record. The output is
returned in the same list.

2. split8ns(list[], rSz, sBt): A non-stable version of split8 that
is also slightly faster.

3. split(list[], rSz, kSz, sBt): Split the list of rSz-byte records
using a kSz-bit key starting at bit sBt of the record (Figure 7).
This primitive uses split8 iteratively.

4. splitGatherIndex(list[], rSz, kSz, sBt): Split the index val-
ues instead of the records. The function returns a list gindex
of index values for subsequent gathering.

5. splitScatterIndex(list[], rSz, kSz, sBt): Similar, but returns
a list sindex of index values for scattering. That is, sindex[i]
gives the index in the split list for the input record list[i].



The GPU is a coprocessor to the CPU which can perform compute
intensive operations very fast. GPU is not good at data movement
involving irregular patterns; the bandwidth available to move data
between the CPU and the GPU is highly limited. The split-index
primitives explicitly enable the use of the GPU as a coprocessor
that performs the compute intensive part of the split, leaving the
data movement to the CPU or another device that is good at that.

3.5 Performance of Split

Split can operate on a maximum of 1K bins in a single pass due
to shared memory limitations. Figure 4 shows times for a single
pass of split for different numbers of bins. Split performs best in
the central region, where the number of bins is large enough for
minimal atomic clashes and small enough for efficient use of shared
memory. We use 256 bins or 8-bits of key size as the basic split
operation for maximum efficiency. Figure 8 gives the times for
splitting 64-bit records to different key sizes. All timings in this
paper are taken on a single GPU of a Tesla S1070 server, unless
otherwise indicated. The figure shows that the split time increases
linearly with the key size (or logarithmically with the number of
categories). We can also see linear increase in split time as the
number of records increases. All key values in all our experiments
are generated using a system random generator.
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Figure 8: Time to split 64-bit records using key sizes from 8 to 64
bits for lists of lengths from 8 to 64 million. Split is scalable in the
key size and list length.

Figure 9 gives split results for many combinations of keys and val-
ues, with the record size varying from 32 bits to 128 bits. Figure 10
gives the times for splitting indexes for less than 4 billion records.
The index is then a 32-bit number which is used as the value with
different key sizes. The dependence on the key size can be observed
to be linear when record size is fixed. The dependence on the record
size is sublinear in this range as larger records are read using higher
access widths.

4 Gather and Scatter Primitives

The data movement performance of the GPU depends heavily on
the memory access patterns. Optimal accesses can be several folds
faster than suboptimal ones. Optimal access patterns require deep
understanding of the architecture and may not available to every
user. We present two primitives for the common data mapping op-
erations on the GPU, namely, gather and scatter, using an index list.
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Figure 9: Split timings for different record sizes and key sizes.
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Figure 10: Time to split a 32 bit index value for different key sizes.

Gather is a simple operation that can be implemented using:
outList[threadID] ← inList[gindex[threadID]],
where threadID is a sequence number of each thread. The reading
of gindex and the writing of outList are perfectly coalesced with
very high instantaneous locality on current GPUs as consecutive
threads access consecutive records. The reading of inList follows
irregular access pattern and can be very inefficient due to low
instantaneous locality. The GPU can handle 4-byte, 8-byte, and
16-byte entities in a single memory access. The above instruction
completes the gather for these record sizes. Similar observations
hold for the scatter operation.

4.1 Collective Data Movement

Gather and scatter of large records need to loop over elements of
the same record. Since a thread moves a record, the inner loop
goes over its elements. This, however, reduces the instantaneous
locality of writes of gather by a factor equal to the number of data
elements in the record, as the memory accessed by consecutive
threads will have gaps between them. The instantaneous locality
can be improved by multiple threads copying each record collec-
tively, with consecutive threads reading and writing adjacent data
elements. Figure 11 demonstrates the approach.

Current GPUs achieve the highest instantaneous locality if 16
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Figure 11: Instantaneous locality is low when each thread copies
one record element by element (top). Collective copying of records
by multiple threads improves the locality (bottom)

consecutive threads (called a half-warp) access adjacent data
elements. Thus, best performance is obtained when maximum
number of threads cooperate on a single record, if a thread cannot
load a record in a single read. The data access width should be
set to 4, 8, or 16 bytes accordingly. For example, 8 threads should
cooperate using 4-byte accesses on 32-byte records, 16 threads
using 4-byte acess on 64-byte records, and 16 threads using 8-byte
access on 128-byte records, etc. The number of threads that
cooperate on a record of size recSz bytes and the data-access width
are:

recSz ≤ 64: (recSz / 4) threads and 4-byte accesses record
recSz ≤ 256: 16 threads and 4, 8 or 16 byte accesses, depend-

ing on (recSz / 16)
recSz > 256: (recSz / 16) threads and 16-byte accesses

4.2 Data Movement Primitives

We provide implementations of the following data movement prim-
itives on the GPU:

1. gather(list[], rSz, gindex[]): Returns a list that is a permuta-
tion of the input list of records of size rSz bytes, with the list
gindex providing the index to gather from.

2. scatter(list[], rSz, sindex[]): Similar, with sindex providing
the index to scatter each record to.

4.3 Performance of Gather and Scatter

Figure 12 shows the times for gather and scatter for combinations
of number of records ranging from 4 to 64 million and record size
ranging from 32 to 256 bytes, using the collective data movement
scheme described above. The dependence on the number of records
can be seen to be linear, especially for larger records. The depen-
dence on the record size is highly sublinear as all memory opera-
tions become completely coalesced with high instantaneous locality
when moving larger records. From the table, the time to move 16
million 128-byte records is twice the time needed to move 8 million
256-byte records, though the total data moved is 2 gigabytes. This
is because a record is collectively moved by 16 threads, each ac-
cessing 8-byte elements, in the former case whereas the latter case
uses 16 threads and 16-byte accesses.

�� �� ��� ����� �	 �� �� 
��� � �� �� ���� ��� ��� ����� �� ������ ���
���

������������

T
im

e
 (

in
 m

se
c)

�� �� ��� ��� ���
Figure 12: Results for random scatter of 4 to 64 million records of
sizes 32 bytes to 256 bytes on Tesla S1070.

5 Applications of Split and Gather Primitives

The primitives we presented find wide applications in different ap-
plications. We give results of a few here.

5.1 Sort
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Figure 13: Sorting times for list lengths from 1 to 128 million for
32 to 128 bit numbers.

Sorting is a special case of split where the key has ordinal values
and is itself interpreted as the category number. Our split scales
linearly in the key size by applying the basic 8-bit split procedure
iteratively using ordered atomic operations. Our SplitSort algorithm
performs sorting using repeated splits, which is akin to LSD radix
sort applied to a radix of 256. The scalability of the basic split
makes sorting also highly scalable. Figure 13 gives the sorting per-
formance on one GPU of a Tesla S1070. We can clearly see the
linear behaviour in the number of records as well as on the key
size.

Figure 14 compares our SplitSort with CUDPP 1.1 which imple-
ments the algorithm proposed by Satish et al. [Satish et al. 2009].
CUDPP sort outperforms previous CUDPP implementation by a
factor of 4 and comparable CPU routines on 8 cores by a factor of



� � � � �� �� �� ������		 �
� ��� ���� ����� ���� ����� ����� ����� �������������� �
�� ��
�� ��
 � ��
��  �
�� � �
� ���
� ���
�! "#$$%&# �
�� ��
�� � 
�� ��
 � ��
�� ��
� ��
�� ��
��
���

�������
'( )*+ ( ,-(..( /
*01,2 /3

456789 :; <=868>?@ AB> CB==B:>@DEFGHH ��� "#IJK"LMK ! "#$$%&#
Figure 14: Comparison of our SplitSort and CUDPP v1.1. We
compare timings for unsigned int key-value pairs on one GPU of
Tesla S1070.

3.5. Satish et al. [Satish et al. 2009] report sorting a record con-
sisting of a 32-bit key and a 32-bit value. Figure 14 compares the
two implementations on one unit GPU of Tesla S1070 for 32bit
key-value pairs for 1M to 128M input elements. SplitSort performs
about 25% better than CUDPP 1.1 implementation for various sized
same input to the two approaches.
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Figure 15: Comparison of sort times on different GPUs. A roughly
linear performance growth can be seen with increase in cores. The
Tesla and the GTX280 have 240 cores each. The 8800GTX has 128
cores and teh 8600GT has 32 cores.

Figure 15 shows another aspect of scalability of our approach. The
figure shows sorting times for lists of different sizes for 32-bit num-
bers. The sorting time scales linearly with the list length as was ob-
served before. The sorting time also grows approximately linearly
with the number of cores available on the GPU. The 8800GTX and
8600GT do not support atomic operations on the shared memory.
We simulate it by serializing the clashes.

Sorting 48-bit and 64-bit numbers finds use in data distribution ap-
plications, especially, data structure building. The octree built on
the GPU by Zhou et al. [Zhou et al. April, 2008] was limited to
9 levels as greater than 32-bit sorting wasn’t available. With such
scalable sort, the GPUs can be used to sort lists of large records
encountered in large databases, etc. The GPU can act as a sort-
ing coprocessor if the splitGatherIndex primitive is used for in-

dex mapping. The data movement is separated by the use of the
gather/scatter primitives. Sort of such records can be decomposed
into a two-step process as shown below.

Algorithm 4 SortLargeRecords

1: gindex[] ← splitGatherIndex(list[], rSz, kSz, sBt)
2: outList[] ← gather(list[], rSz, gindex[])

Table 1 gives the time to sort 8 million to 64 million records of size
32 bytes to 256 bytes, for key sizes of 32 to 64 bits. We can sort 16
million 128-byte records in 379 milliseconds with 4-byte keys and
in 556 ms with 8-byte keys. We can also sort 64 million 32-byte
records in 1490 ms with 4-byte keys and in 3126 ms with 8-byte
keys. These cases use up all of the 4 GB available on a single GPU
of the Tesla S1070. Scalability of our approach clearly makes it
possible to handle such challenging cases.

Record List Length
Size 8M 16M 32M 48M 64M

Key size: 4 bytes
32B 270 352 733 1102 1488
64B 182 367 752 - -
128B 194 373 - - -
256B 196 - - - -

Key size: 6 bytes
32B 210 460 955 1720 2650
64B 230 473 972 - -
128B 244 489 - - -
256B 248 - - - -

Key size: 8 bytes
32B 251 530 1080 1980 3124
64B 263 540 1190 - -
128B 278 555 - - -
256B 281 - - - -

Table 1: Sorting large records. Times are shown in milliseconds to
sort lists of length 8 to 64 million using key sizes of 4 to 8 bytes.

5.2 Data Structure Building

One approach to handle dynamic and deformable objects for ray
tracing is to build an appropriate data structure in each frame.
Bounding Volume Hierarchy [Lauterbach et al. 2009], kd-trees
[Zhou et al. 2008] and camera-space voxels [Patidar and Narayanan
2008] have been used by different authors. Lauterbach et al. use a
series of 1-bit splits to build the hierarcy, which can be speeded
up using the general split primitive we presented. Patidar and
Narayanan divide the view frustum to 128 × 128 × 16 voxels and
map each triangle to multiple voxels using a multilevel split op-
eration. This can be performed using a split after mapping each
triangle to a record with an 18-bit key (to address the 256K voxels)
and 20 bit value (to address 1 million triangles). The data struc-
ture for 16 million voxels can be built in the same time. The octree
built by Zhou et al. [Zhou et al. April, 2008] will not be limited to
9 levels if our scalable sorting is used. Applications like particle
simulation and N-body problem map naturally to splits to a 2D or
3D grid. A concurrent submission from our group uses these split
primitives to implement a fast minimum spanning tree algorithm. It
uses splits on lists of length |V | or |E| of 32-bit and 64-bit data to
manipulate the graph. An anonymous version of the submission is
given as additional material.



6 Conclusions and Future Work

We presented a few data mapping primitives and their scalable im-
plementations on the GPU using CUDA in this paper. The split
primitive and its variants scale linearly in the number of records,
the key size, and the number of available cores. The gather primi-
tive scales linearly with the number of records and sublinearly with
the record size due to memory coalescing effects. We demonstrated
high performance on these primitives and used them to build appli-
cations like sorting large numbers and sorting of large records, such
as sorting 64 million 32-byte records using 8-byte keys in about 3
seconds.

We will release optimized implementations of these primitives for
general use. These primitives can find a lot of applications in pro-
cessing irregular data such as graphs on massively multithreaded
architectures like the GPU. We outlined how their use can acceler-
ate applications like data structure building for ray tracing, sorting
data for fluid simulation, etc.
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A Ordered Atomic Operations

An atomic operation is a set of actions that can be combined so that
they appear to the rest of the system to be a single operation that
succeeds or fails. An atomic operation on the shared location can
be implemented by serializing it in some order such that the final
results are correct. That is, for an operation O performed concur-
rently on a location M by a set S of processes, the resultant value
in M is:

M ← Ot(Os(· · · Or(Oq(Op(M))))),

where {p, q, r, · · · , s, t} is a permutation P(S) of the processes in
S. All permutations will give correct results for associative oper-
ations. Atomic operations of the test-and-set class are needed to
build coherent data structures on distributed systems. These oper-
ations return to each process the value of the location M immedi-
ately prior to its own operation, in one indivisible step. The effect
of the atomic operation is equivalent to the following steps.

1. Compute a permutation P of S as p1, p2, p3, · · · , p|S|.
The exact permutation used is unspecified and is usually
implementation-dependent.

2. Each process pi gets the following partial result mi as its re-
turn value

mi ← Oi−1(Oi−2(· · · O1(M))),

where Oj is the operation of the j’th process in P . The oper-
ation of the first process of the permutation is applied first.

3. The final result in M is given by

M ← O|S|(O|S|−1(· · · (O2(O1(M)))))

An ordered atomic invocation of a concurrent operation O on a
shared location M is equivalent to its serialization within the set
S of processes that contend for M in the order of a given priority
value π. The steps involved are the same as above, with the the first
one replaced by:

1. Compute a permutation P of S as p1, p2, · · · , p|S| such that

π(p1) ≤ π(p2) ≤ · · · ≤ π(p|S|).



Example: Assume N processes hold a bit b and a data element
data. Assume n processes have b = 1, where n < N is not known
ahead of time. The n data elements are to be packed into a shared
array of length n. Atomic increment applied to a common count
value will give each process a unique index to which its data can
be written. The order of packing will be unspecified. Assume a
different scenario in which the packing has to follow the order of
the unique processor ID ranging from 1 to N . That is, the data from
a process i should appear earlier than the data from all processes j
if i < j. Atomic operation cannot gurantee the required results if
an arbitrary (implementation-dependent) permutation is applied to
serialize the computations of processes contending to increment the
same location. This problem can be solved easily using an ordered
atomic increment with the process ID as the priority value. The
increment operation returns the current value of the location and
post-increments it. The priority ensures that processes with lower
IDs get lower values of index than those with higher IDs, resulting
in the desired ordering of the data elements.

Ordered Atomics on CUDA

The atomic operations on the global memory and shared mem-
ory perform an implementation-dependent serialization and cannot
guarantee any ordering. Our experiments on the GPU hardware ver-
ified this fact; the ordering is not maintained and split done using
them produce wrong results. We can, however, simulate ordered
atomic operations by serializing the threads of a warp. Each thread
will wait for its turn to write. This will incur a fixed overhead pro-
portional to the warp size, but does not perform extra shared mem-
ory writes. The kernel code outline for ordered atomic increment
of index is given below.

for i = 0 to WARPSIZE-1 sequentially
if (threadIdx.x == i)

ownIndex = index++

For each of the 32 cycles, only one thread performs the write on the
shared memory thus ensuring the atomicity. This approach is slow,
but can control the order in which clashing threads are serialized.
The thread ID is used as the priority value but other priority values
can also be used. Our experiments on the GPU confirms this fact
and the ordering can be preserved for clashes within the same warp
of threads. The current GPU hardware does not guarantee ordering
of warp scheduling for the sake of greater ability to hide memory
latencies. Thus, ordered atomic operations are not guaranteed to
work across multiple warps by serializing. The serializing incurs
a speed penalty factor of 5 to 10 times over the shared memory
atomic operations implemented in hardware.


