
Allowing Multiple Rounds in the Shared Whiteboard

Model: Some More (Im)possibility Results

Dharmeet Singh Hora, Piyush Bansal, Kishore Kothapalli and Kannan Srinathan

International Institute of Information Technology, Hyderabad, India

Email: {dharmeet.singh, piyush bansal}@research.iiit.ac.in, {kkishore, srinathan}@iiit.ac.in

Abstract—The shared whiteboard model for distributed com-
puting is one of the recent interesting models to be proposed (See
Becker et al. (SPAA 2012)). In its basic form, this model allows
all nodes to write a message of no more than O(log n) bits on
a whiteboard that every node can read. However, each node can
write at most once. In this model, a variety of problems from
graphs are shown to be either possible or impossible.

In this paper we extend the work of Becker et al. to allow
for nodes to write on the shared whiteboard more than once.
However, each node can write at most O(log n) bits at any one
instant. Interestingly, in this model, we show that allowing just
two rounds of writing on the whiteboard, one can color the
vertices of a d-degenerate graph using d + 1 colors. Similarly,
we show that two rounds suffice to find maximal independent
set (MIS), whereas 2-ruling sets can be computed in one round
in simultaneous synchronous models. Finally, we show that for
finding connected components in a graph, even O(1) rounds is not
enough in general. We show that any deterministic algorithm that
follows certain rules requires at least Ω(log n/ log log n) rounds
to find the connected components of an n-vertex graph. At the
same time, we show the existence of a O(log n) round algorithm
for the same. Thus, our results indicate that the multi-round
shared whiteboard model has interesting consequences.

I. INTRODUCTION

An interconnected distributed system is typically repre-
sented by a graph, where nodes represents the processors
and edges corresponds to the communication links between
processors. In general the nodes lack the global knowledge
about the network, and the communication takes place only
through inter-processor message passing, hence new models
with new algorithmic techniques and complexity notions arise.
In the classical distributed models, the communication is much
slower and costly than local computation, hence the complexity
analysis of distributed algorithms mainly focuses on message
passing where the size of the messages sent by each node or
the number of communication rounds needed to perform some
computation becomes important performance measure.

One of the recent developments in models of distributed
computing is the shared whiteboard model of Becker et al.
[3]. Becker et al. [3] model the distributed system is a graph
in which each node knows only about its neighborhood, and
the communication takes place through a whiteboard. Each
node can write a message of fixed length on the whiteboard
and read the contents of the whiteboard at any given time.
The computation each node needs to perform is related to
some property of graph. The shared whiteboard model falls
between the classical CONGEST [11] and the LOCAL model
introduced by Linial [8]. In the CONGEST model, each
node can send a message of O(log n) bits through each of

its outgoing links, whereas in the LOCAL model there is no
restriction on the size of the message sent by each node.

In the shared whiteboard model, Becker et al. [3], have
identified four variants free-sync, SimultaneousSync, Free-
Async annd the SimAsync. By now, several possibilities and
impossibilities are known in these models when each node is
allowed to write on the whiteboard at most once. For instance,
finding an inclusive maximal independent set MIS(v), that is a
maximal independent set with node v in the MIS, is possible in
the SimSync model and is impossible in the SimAsync model.
Similarly finding a breadth-first ordering of the nodes of an
even-odd bipartite graph is possible in FreeAsync model but
is impossible in SimSync model. However, such a breadth-first
ordering of the nodes of a graphs is possible in the FreeSync
model.

However, it is not clear if the shared whiteboard model
should naturally be limited to one round. Hence, a natural
extension is to study the power of the above models when
each node is allowed to write on the whiteboard more than
once. The parameters of the whiteboard model therefore are
the number of rounds that nodes can write to the whiteboard,
the message size during each round and the maximum message
size written by any node over all the rounds. Once each node
can write more than once on the whiteboard, which all nodes
can see at all times, it is conceivable that several fundamental
problems on graphs that are impossible to solve with one round
may now be solvable. For instance, we show that the MIS
problem can be solved in two rounds in the SimSync model.

Extending the model of Becker et al. [3], our work there-
fore tries to answer the following questions. Is the one round
shared whiteboard model strictly less powerful than a 2-round
shared whiteboard model? What problems are possible and
impossible in the multi-round shared whiteboard model. Is
the relative hierarchy of the four different shared whiteboard
models as identified in [3] maintained over multiple rounds?
Answers to these questions can help one understand the true
potential of the shared whiteboard model. We extend the shared
whiteboard model to a multi-round model. In this model, we
show the following results.

• We show that in a 2 round shared whiteboard model
one can color planar graphs using 6 colors and graphs
with bounded degeneracy d using d + 1 colors. These
algorithms operate in the FreeAsync model, and each
node is required to write O(log n) bits on the shared
whiteboard in each round. This result shows that the
2 round model is strictly more powerful than the one
round model of [3].

• We show that a 2-ruling set of a graph can be
computed in one round in the SimSync model, and
computing an MIS in the same model can be done in
two rounds.

• We show a nontrivial lower bound of
O(log n/ log log n) rounds for finding the connected
components of a graph in the SimSync model. This
lower bound applies to several standard deterministic
algorithms. We further show that the popular parallel
algorithm of Shiloach and Vishkin [12] can be
adapted to run in the SimSync and the SimAsync
models, indicating an O(log n) upper bound on
the number of rounds for finding the connected
components of a graph. Surprisingly, we show that in
the FreeAsync model, one can solve this problem in
one round.

A. Related Work

The shared whiteboard model of Becker et al. [3] follows
another similar model by Becket et al. [4]. The model of [4]
is called as a referee model where there is a referee who can
see all the messages written on the whiteboard, perform a
computation, and can deduce certain properties of the graph.
Nodes however are restricted to write at most O(log n) bits
on the whiteboard.

For coloring planar graphs, there exist parallel and dis-
tributed algorithms that use O(1) colors and run in O(log n)
rounds [2]. It was also shown that one cannot color a planar

graph in less than O(2
√

log n) rounds unless O(
√

log n) colors
or more are used [1]. However, it seems that the ability to
see the decisions of all the nodes on a whiteboard can help in
reducing the number of rounds to two.

Becker [3] show that MIS(v) can be solved in one round
in SimSync model, where MIS(v) stands for an inclusive
maximal independent set, that is an MIS which contains a
given node v. It is not known whether the MIS problem can
be solved in round in the above model. We show that two
rounds suffice by first computing a 2-ruling set in the first
round, and extending the 2-ruling set to an MIS in the second
round.

Finding the connected components of a graph has been
studied in various settings. Shiloach and Vishkin [12] and
Chong et al. [5] show that O(log n) parallel time suffices to
solve the problem in the CRCW and the EREW PRAM model
respectively. Becker et al. [3] show that the problem can be
solved in one round in FreeSync i.e. free synchronous model
in shared whiteboard setting.

II. A SUMMARY OF THE SHARED WHITEBOARD MODEL

In this model a whiteboard is shared with all the nodes
in the interconnection network, where each node can write a
message m after performing its local computation based on
its ID, its local knowledge and the contents of the whiteboard.
The interconnected network is modeled as a simple undirected
connected n-node graph G = (V,E). Each node v ∈ V has
a unique identifier ID(v) between 1 and n. Typically, V =
{v1, v2, ..., vn}, where vi is such that ID(vi) = i.

At any point of time a node v can be in any one of three
states {awake, active, terminate}, where awake stands for the
nodes which have not written their message on whiteboard and
are not ready to write, active means that the nodes are ready
to write on whiteboard and if there are more than one active
node, then the adversary chooses the order of nodes to write
on the whiteboard. When the nodes have written their message
m on the whiteboard they go to the terminate state.

This model can be further classified into four ways,
depending on whether all the nodes are active, called the
simultaneous models, or the nodes become active according to
some activation function, called the free models. Another clas-
sification is based on whether the nodes generate their message
as soon as they become active, called asynchronous model, or
whether they generate their message when they are chosen to
write on the whiteboard, called the synchronous models. We
now formalize the synchronous and the asynchronous models.

A. Synchronous Protocol

In a synchronous protocol, each node generates its message
depending on its ID, the local knowledge and the contents on
the whiteboard, and the node becomes active according to a
activation function (for Free model) which decides based on
the ID of the node, its local knowledge and the contents of the
whiteboard. After end of each round, all the nodes will go to
awake state at the start of next round, and the contents on the
whiteboard of the prior rounds will be considered in activation
and message functions. So formally:

• actn : [1, n] × 2[1,n] × Wn,f(n),r(n) →
{awake, active} where W represents the whiteboard,
f(n) stands for the message size and r(n) represents
the number of previous rounds.

• msgn: [1, n] × 2[1,n] × Wn,f(n),r(n) → {0, 1}f(n)

B. Asynchronous Protocol

Nodes generates their messages as soon as they become
active in the asynchronous protocol, so if two nodes becomes
active simultaneously, then the message written by first node
does not affect the message of second node. Hence we can
combine the activation function and message generation func-
tion, and write them formally as:

• act/msgn: [1, n] × 2[1,n] × Wn,f(n),r(n) →
{awake, active} × {0, 1}f(n). The message is
created only when the node becomes active.

Depending on whether all nodes are initially active or
awake, and the message creation protocol used we have 4 mod-
els: free asynchronous FreeAsync, simultaneous asynchronous
SimAsync, free synchronous FreeSync and simultaneous syn-
chronous SimSync. Table ?? summarizes the above discussion.

As shown in [3], the above models follow the following
hierarchy:

SimAsync < SimSync < FreeAsync.

The FreeSync is the most powerful of all models, but whether
FreeAsync is weaker or equivalent to FreeSync is left as an
open problem.

III. GRAPH COLORING

In this section we will solve the problem of graph coloring
for planar graphs and then extend our arguments to graphs
with bounded degeneracy. We will show that in the FreeAsync
model, we can color the vertices of a planar graph using 6
colors, and color the vertices of a graph with degeneracy d
using d + 1 colors. Both our algorithms need nodes to write
O(log n) bits on the whiteboard over two rounds.

A. Vertex Coloring a Planar Graph with 6 Colors

The basic idea of our algorithm is to mimic the recursive
algorithm for six coloring the vertices of a planar graph. This
is possible due to the fact that every planar graph has a vertex
of degree at most 5. Hence, once such a vertex v is identified,
we can color the rest of the graph recursively using 6 colors.
In the end, we can then extend the coloring to vertex v easily
as the neighborhood of v can have at most 5 distinct colors.

We will use the above idea to color the vertices of a planar
graph in two rounds. In the first round, a node becomes active
if its remaining degree is at most 5. Each such node will
write its ID on the whiteboard over the first round. In the
second round each node will become active in the reverse
order of the order in which they write their ID’s on the
whiteboard. Each node will now compute its color, using the
information available on the whiteboard and then writes its
choice along with its ID on the whiteboard. Algorithm 1
describes our algorithm whose correctness is shown by the
following theorem.

Algorithm 1: 6-Coloring Planar Graphs

Round 1:
while deg(v) > 5 OR state(v) = awake do1

if deg(v) ≤ 5 then2

state(v) = active;3

if node(v) chosen by adversary to write then4

write ID(v) on whiteboard;5

Nbrs(v) update their remaining degree;6

end
end

end
Round 2:
while state(v) = awake do7

Of the remaining nodes, node v which wrote last in8

the first round becomes active;
Node v writes its ID, and picks the recently used9

color c if no neighbors used it, else pick a new
color;

end

Theorem 1. In the FreeAsync shared whiteboard model, in
two rounds, the vertices of a planar graph can be colored
with 6 colors. Further, each node writes O(log n) bits in each
of the two rounds.

Proof: In Algorithm 1 each node with at most degree 5
will become active and write its ID in the order chosen by the
adversary. Notice that by the time a node v gets its turn to write
on the whiteboard in the second round, it holds that at most five
colors would be used up in its colored neighborhood. So, node

v can color itself in second round and write its choice on the
whiteboard. In essence, the protocol is playing the recursive
algorithm by cleverly using the whiteboard.

Notice further that in the second round, only one node
is active at any moment and the message this active node
writes in the second round will be dependent on contents on
whiteboard and the local knowledge of v.

Since the ID of a node and its color choice are both in
O(log n) bits, the claim on the message complexity holds.

B. Coloring graphs with bounded degeneracy

Algorithm 1 which is coloring the planar graph using 6
colors, can be extended to Algorithm 2 which is algorithm to
color a graph G with bounded degeneracy d using d+1 colors
in 2 rounds. The basic idea of the algorithm is to adapt the
recursive algorithm for d + 1 coloring a d-degeneracy graph.
The recursive algorithm identifies a vertex v of degree at most
d, removes it from the graph, and colors the rest of the graph
with d + 1 colors. This coloring is then extended to vertex v
noting that the neighborhood of v has at most d colors used
up. We now present Algorithm 2 that achieves the required
coloring in the FreeAsync model.

Algorithm 2: d+1 Coloring

Round 1:
while deg(v) > d OR state(v) = awake do1

if deg(v) ≤ d then2

state(v) = active;3

if node(v) chosen by adversary to write then4

write ID(v) on whiteboard;5

Nbrs(v) update their remaining degree;6

end
end

end
Round 2:
while state(v) = awake do7

Of the remaining nodes, node v which wrote last in8

the first round becomes active;
Node v writes its ID, and picks the recently used9

color c if no neighbors used it, else pick a new
color;

end

Theorem 2. In the FreeAsync shared whiteboard model, in
two rounds, the vertices of a graph of degeneracy d can be
colored with d+1 colors. Further, each node writes O(log n)
bits in each of the two rounds.

C. MIS and 2-Ruling Sets

In this section, we focus on the problems of computing a
maximal independent set in a graph and computing a 2-ruling
set in a graph. It is shown in [3] that a relaxed notion of
an MIS, called the inclusive-MIS, where one given node v is
known to be the part of the MIS, can be computed in one
round in the SimSync model. We show that while finding an
MIS in the SimSync model is not possible in one round, a
2-ruling set can be computed in one round in the same model.
Further, a 2-ruling set can be extended to an MIS with one
more additional round.

D. One round 2-ruling set and 2 round MIS

MIS is impossible in one round in the SimSync model, but
2-ruling set is possible in the same setting in one round. The
basic idea is that each node will write a bit 0 or 1 chosen
uniformly at random, if none of its neighbor is in independent
set S, and will write 0 if any one neighbor is in S.

If a node v writes 0, and all its neighbors have not yet
written their message on whiteboard, then v picks one of
its neighbor w uniformly at random from those neighbors
who have not written their message. Node v uses its writing
opportunity to advise w with an advise bit 1, so that w can
decide to write 1 or 0 depending on whether any of its neighbor
is in S. This helps to ensure that there is at least one node at a
distance at most 2 from v in set S. We now formally describe
our algorithm which each node will follow.

Algorithm 3: 2-Ruling Set

Each node vi will check if there is any advise for it;1

if yes then2

if no neighbor of vi has written 1 then3

write 1;4

else
write 0;5

end
else

check the bits written by neighbors of vi;6

if none wrote 1 then7

choose a bit from {0, 1} u.a.r.;8

if 0 then9

if some neighbors are pending then10

write 0 and give a advise bit 1 to any11

one neighbor vj chosen u.a.r. among the
pending ones;

else
write 1;12

end
else

write 1;13

end
else

write 0;14

end
end

Each node in the graph will follow the above algorithm,
when it is chosen by the adversary to write on the whiteboard
and will write its message. To compute set S we will just
include the nodes who have written 1 and exclude those who
wrote 0.

Lemma 3. When all the nodes have written their message
according to Algorithm 3 The set we compute from the
whiteboard is a 2-ruling set.

Proof: When a node gets it turn to write on the white-
board, it will write 0 if any of its neighbor is in set S which
is done in line 5 and line 14 of the algorithm. So no two
neighbors can be in set S.

Now we need to check that at least one neighbor which is
at most at distance 2 from a node v is in set S. For this if all

the neighbors of v have written their messages and none is in
S then it will write 1 (line 12), thus maintaining the conditions
of independent set.

If few neighbors are pending and v picks 0, so it will give
a advise bit to any of its neighbor vj in lines 9-11 which will
make sure either vj or any of its neighbor is in set S (lines
2-4). So for any node vi if it is not in S then its neighbor
which is at distance ≤ 2 from vi will be in S. Hence set S is
a 2-ruling set.

Algorithm 3 and Lemma 3, leads us to the following
theorem.

Theorem 4. The problem of finding a 2-ruling set can be
solved in SimSync(f(n)) model for f(n)=O(log n) in one round.

Now using Algorithm 3, after the first round to compute
S, we can compute MIS in second round using set S. In the
second round any node v that is not in S and non of its
neighbors are in S, will write 1 and will be added to S. Nodes
which are in S or whose neighbor(s) is in S will write 0. We
will consider the updated S at any given time as any node can
compute current S from the contents of the whiteboard. The
above discussion leads to following theorem.

Theorem 5. The problem of finding maximal independent set
(MIS), can be solved in 2 rounds in SimSync(f(n)) model for
f(n) = (O(log n) bits.

IV. FINDING THE CONNECTED COMPONENTS OF A

GRAPH

In this section, we will focus on the problem of finding
the connected components of a given graph. Our techniques
cover the four shared whiteboard models, starting with the
Free models first. We show that in Free models, we can solve
the problem in one round, whereas in Simultaneous models
we get lower bound of (O(log n/ log log n)) rounds and a
upper bound of O(log n) rounds. So the Free models are
more powerful than Simultaneous models even in the case of
multiple rounds.

A. One Round Protocol for Free Models

In this section we work with the FreeSync and FreeAsync
models. Recall from Section II that in these models, nodes are
free to become active as per their activation function, and they
will generate their messages as soon as they become active
in case of asynchronous model, whereas they will generate
their message only when they are chosen to write in case of
synchronous model.

In [3] Becker et al. have shown that BFS can be solved in
one round in FreeSync model and hence connected component
can be found in one round. But for the FreeAsync model he has
conjectured that BFS cannot be solved for general graphs in
one round, here we will show that still connected components
can be found in one round in FreeAsync model. Following
is the algorithm to find connected components in FreeAsync
model in one round.

Theorem 6. Finding the connected components of a graph
can be solved in one round in FreeSync and FreeAsync model.
Further, each node has to write message of size O(log n) bits
on the whiteboard.

Algorithm 4: Connected Components in Free Model

while state(v) = awake do1

Node vi with highest ID changes its state from2

awake to active;
vi writes its ID on whiteboard, neighbors of vi3

become active;
while state(v) = active do4

node vj which the adversary chooses to write,5

writes its ID;
Neighbors of vj become active;6

end
end

Proof: We will prove that Algorithm 4 runs correctly
and we will get connected components in the graph. In fact
Algorithm 4, will give us connected components in the form
of spanning trees. At the beginning, node vn will activate,
and then its neighbors will activate, and as soon as any
neighbor writes its message on whiteboard then its neighbor
will activate. The inner while loop will make sure that all the
nodes belonging to the same connected component activate
and write their message.

If there are no active nodes and there is still some node
left in awake state, then the outer while loop will make sure
that of the remaining nodes the one with highest ID activates.
So the algorithm will execute, till all the nodes don’t go to
terminate state. In the end we will get connected components
with representative as highest ID nodes.

B. Lower Bounds for the SimSync Model

In the simultaneous synchronous model, all the nodes are
active and the order in which nodes write is chosen by the
adversary, and the nodes will generate their message when the
adversary chooses them to write on the whiteboard depending
on the contents of the whiteboard and their local knowledge.
We construct a graph, for which we will show that any
general algorithm like choosing the lowest ID neighbor or
highest ID neighbor or average of the IDs of neighbors etc.
in SimSync model will take O(log n/ log log n) rounds to find
the connected components which will give us the lower bound.

1) Structure of the Graph: Now we will construct the
graph for which any general deterministic algorithm will take
O(log n/ log log n) rounds. We first give the structure of the
graph and then assign the IDs to the nodes. We start with
two nodes a and b and an edge between them. Let d be the
degree of the nodes a and b that we wish to create. We will
add trees of size, k!/1! + k!/2! + k!/3! + + k!/k!, for
k = 1, 2, · · · , 2(d − 1), alternatively to the nodes a and b.

For a given k between 1 and 2(d − 1), each such tree
added to the nodes a and b would be such that it has k! nodes
as leaves, k!/2! nodes at the level prior to leaves, and so on.
Further, the nodes will be uniformly distributed in the subtrees,
such that root of the subtree will have k children, each child
of root will have k−1 children, then their child will have k−2
children, all the way up to nodes which have 2 children. Figure
1 shows the construction of graph step by step, where we
have added trees of size {1(1!/1!), 3(2!/1!+2!/2!), 10(3!/1!+

Fig. 1: Step by step construction of our graph

Fig. 2: Numbering of Graph

3!/2! + 3!/3!)} nodes, alternatively to nodes a and b, starting
with node a. In the graph in Figure 1, we have chosen d = 2.

2) Numbering of nodes for the example graph: We consider
node a and node b and number them vn−1 and vn respectively.
Then we consider node b as the root of our graph, and then
number the nodes level by level starting with bottom most
level starting from v1.

We consider the subtrees connected to node a and b, if two
nodes are at the same level, but in different subtrees then the
nodes of subtree connected to node b will be numbered first.
If the nodes are in same level, but in different subtrees both
connected to same center i.e. a or b, then the nodes of smaller
subtree would be numbered first.

When we number the nodes at any level whose one level
below is already numbered, then the node with highest ID
children, should be numbered with lowest number among the
remaining numbers.

Considering our graph in Figure 2, we consider v57 as
root and at level 0, so we have have levels from {0, 1, .., 4}.
We number nodes at level 4 from {1, 2, ..., 24} and then from
{25, ..., 30}, then we move to level 3, and number parents of
v24 and v23 as they are in subtree connected to node b or vn.
Then we number nodes of subtree connected to node a at level
3, then we move to nodes at level 2 and so on.

3) Value of k for such a graph: In the graph constructed
above we have not mentioned the value of k. In this section we
will try to calculate the value of k in terms of the number of
nodes, n, in the graph. Notice that for a given k, the number of
nodes in that subtree is rk = k!/1! + k!/2! + k!/3! +k!/k!.
We can simplify this is rk = (e − 1) · k!. Hence the total

number of nodes in the graph is 2 +
∑2(d−1)

k=1 rk. If n is the
number of nodes in the graph, then from the above, we can
see that d = Θ(log n/ log log n). Further, the largest subtree
we add to the nodes a (or b), has Θ(d) levels.

To arrive at a lower bound for deterministic algorithms, we
proceed in two steps. We first consider an algorithm in which
each node joins the component that its lower numbered neigh-
bor belongs to. Such a rule is used in most parallel/distributed
algorithms for connected components [12], [6]. For such an
algorithm, we show the following lemma and then generalize
the result for general deterministic algorithms.

Lemma 7. Consider a deterministic algorithm in the SimSync
shared whiteboard model with each node allowed to write
O(log n) bits in each round. Suppose that according to the
algorithm, each node will join the component to which its
lower numbered neighbor belongs to. Then, the algorithm
requires Ω(log n/ log log n) rounds.

Proof: We prove the above lemma with the help of our
example graph in Figure 2. Recall that in the SimSync model,
the adversary can choose the order in which the nodes are
writing on the whiteboard. The basic idea therefore is to show
an adversary strategy through which nodes vn and vn−1 will
require several rounds before they join a common connected
component. In that case, we can say that the algorithm requires
a large number of rounds.

This can be achieved by adversary choosing the nodes in
decreasing order of their IDs i.e., vn then vn−1 and so on.
Each node can write only log n bits, apart from its ID, and
choose its lowest ID neighbor. For our example graph, with
the above ordering, nodes vn and vn−1 will join a common
component only in round ℓ where ℓ is the number of levels the
largest subtree added. As ℓ = Ω(log n/ log log n), it will take
Ω(log n/ log log n) rounds to find the connected components
of a graph in the SimSync model.

Using Lemma 7, we give the following theorem which is
generalization of Lemma 7, as we can change the numbering
for choosing highest ID algorithm or average of IDs algorithm.

Theorem 8. There exists no deterministic algorithm to find
the connected components in a graph in SimSync model in
less than Ω(log n/ log log n) rounds provided each node can
write only log n bits in each round apart from its ID.

The above theorem, gives us the lower bound on the
number of rounds required to find connected components in
SimSync model. We have proved it for any general and simple
deterministic algorithm like choosing lowest ID, highest ID,
maximizing the size of the component, average ID etc. that
we can generate the graph in such a way that it will take
O(log n/ log log n) rounds to find the connected components,
but we leave it as an open problem to extend it for any
deterministic algorithm.

We can show that the parallel algorithm by Shiloach and
Vishkin [12], can be simulated in the SimSync model which
will give us the upper bound of O(log n) rounds to find
connected components for any general graph. We show the
following theorem.

Theorem 9. The problem to find connected components can

be solved in O(log n) rounds in the SimSync model, when each
node is allowed to write a message of size O(log n) bits on
the whiteboard.

Proof: The proof for the above theorem is a result of
adapting the Shiloach-Vishkin algorithm [12] to the shared
whiteboard model.

C. Bound for SimAsync Model

Recall from Section II that the SimAsync model is the
weakest of all the models. Hence, the lower bound result from
Section IV-B on the SimSync model applies to the SimAsync
model too. However, we show that the algorithm of Shiloach
and Vishkin [12] can be adapted to run in the SimAsync model
too. Hence, we have the following theorem.

Theorem 10. The problem to find connected components in a
graph can be solved in O(log n) rounds in SimAsync model,
when each node is allowed to write a message of O(log n)
bits on the whiteboard.

V. CONCLUSION

Our work indicates that there are interesting observation
to be made in the shared whiteboard model as far as graph
algorithms are concerned. Our work has the potential to form
a basis for gaining a deeper understanding of the shared
whiteboard model. Further questions that are worth answering
center around the presence of a heirarchy of problems with
respect to the round complexity of their solutions in the
multiround shared whiteboard model.

REFERENCES

[1] L. Barenboim and M. Elkin. Sublogarithmic distributed MIS algorithm

for sparse graphs using Nash-Williams decomposition. PODC pages 25-
34, 2008.

[2] L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in

polylogarithmic time, PODC, pages 410-419, 2010.

[3] F. Becker, A. Kosowski, N. Nisse, I. Rapaport and K. Suchan. Allowing
Each Node to Communicate Only Once in a Distributed System: Shared

Whiteboard Models, SPAA pages 11-17 2012

[4] F. Becker, M. Matamala, N. Nisse, I. Rapaport, K. Suchan and I.
Todinca. Adding a referee to an interconnection network: What can(not)

be computed in one round, IPDPS pages 508-514, 2011

[5] K. W. Chong, Y. Han and T. W. Lam. On the parallel time complexity

of undirected connectivity and minimum spanning trees SODA, pages
225-234, 1999.

[6] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Computing

connected components on parallel computers, Commun. ACM, 22(8),
461–464, 1979.

[7] K. Kothapalli and S. V. Premmaraju. Super-fast 3-ruling sets. FSTTCS,
pages 136-147, 2012.

[8] N. Linial. Locality in distributed graph algorithms, SIAM J. Com-

put.,21(1):193-201, 1992

[9] M. Luby. A simple parallel algorithm for the maximal independent set

problem. SIAM J. Comput.,15(4):1036-1053, 1986.

[10] Y. Métivier, J. M. Robson, N. Saheb-Djahromi and A. Zameri. An opti-

mal bit complexity randomized distributed MIS algorithm, J. Distributed
Computing,23(5):331-340, 2011

[11] D. Peleg. Distributed computing: a locality-sensitive approach. SIAM
Monographs on Discrete Mathematics and Applications, 2000.

[12] Y. Shiloach and U. Vishkin, An O(log n) Parallel Connectivity Algo-

rithm, J. Algorithms,3(1):57-67, 1982.

