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Abstract— The use of manycore architectures and accelerators,
such as GPUs, with good programmability has allowed them to
be deployed for vital computational work. The ability to use
randomness in computation is known to help in several situations.
For such computations to be made possible on a general purpose
computer, a source of randomness, or in general a pseudo random
generator (PRNG), is essential. However, most of the PRNGs
currently available on GPUs suffer from some basic drawbacks
that we highlight in this paper. It is of high interest therefore
to develop a parallel, quality PRNG that also works in an on
demand model.

In this paper we investigate a CPU+GPU hybrid technique to
create an efficient PRNG. The basic technique we apply is that
of random walks on expander graphs. Unlike existing generators
available in the GPU programming environment, our generator
can produce random numbers on demand as opposed to a one-
time generation. Our approach produces 0.07 GNumbers per
second. The quality of our generator is tested with industry
standard tests. We also demonstrate two applications of our
PRNG. We apply our PRNG to design a list ranking algorithm
which demonstrates the on-demand nature of the algorithm and
a Monte Carlo simulation which shows the high quality of our
generator.

Keywords: PRNG, on-demand, list ranking, Monte Carlo,
GPGPU.

I. INTRODUCTION

Randomness is an essential computing resource for many

computations [21], [16], [13]. Hence, investigations into

sources of high quality (pseudo) random number generators

(PRNGs) are important. In parallel computing, designing

parallel random generators is a challenging problem. This

problem becomes more significant, as we are witnessing a

shift to multicore processors.

In recent years, accelerators such as the IBM Cell SPUs,

FPGAs, GPUs, ASICs are studied because of the performance

gains they offer in comparison to the CPUs. Amongst them

GPUs standout to be highly popular, because of low cost and

mass manufacture. GPUs today provide the highest amount

of FLOPs per dollar, and the latest models have a theoretical

peak of 1 TFLOP having hundreds of cores. It is therefore

natural that GPUs have started to occupy a prominent place

in parallel computing in recent years [26], [9], [30]. The

GPU programming SDK also includes PRNGs such as the

CURAND[24], and a Mersenne twister[25] based generator.

Most of the pseudo random number generators based on

GPUs however suffer from several drawbacks. For instance,

PRNGs on GPUs require the application to pre-generate and

store a large batch of random numbers and then use them in

the application. Apart from occupying a significant portion of

the limited storage on GPUs, this is not a satisfactory solution

since the randomness demand of every application cannot be

known apriori. It is therefore important that an on-demand

pseudo random number generator be available so that each

thread running on a GPU can make an API call, such as the

rand() function in ANSI C [14], to obtain a new pseudo

random number as required. Such an on demand generator

also does not require as much storage to store the random

numbers in the GPU memory. Secondly, another limitation of

present generators on the GPUs is that they are not resource

efficient. While the generator is working on the GPU, the

host to which the GPU is attached, typically a multicore

CPU, is computationally idle. This is not a good practice

as the computational power of multicore CPUs is also ever

increasing.

In this paper, we address these limitations and demonstrate

the design and implementation of a fast, efficient, on demand,

and high quality PRNG on a platform consisting of CPUs

and GPUs. This is evident from the performance of the list

ranking and Monte Carlo simulation which we designed using

the PRNG.

A. Motivation

From the above discussion, it is clear that existing PRNGs

on GPUs suffer from several drawbacks. To motivate our

work further, we present four properties that a parallel pseudo

random number generator has to satisfy.

• Scalability: Scalability suggests that large quantities of

random numbers can be generated without any limita-

tions.

• Quality: Many cryptographic and security applications

solely depend on good sources of random numbers [32],

[22]. Hence, the quality of the generator is important.

• On demand generation: It must be possible to use

the generator without a-priori knowing the quantity of

random numbers required. Ideally, a simple API call

should produce a new random number without a large

overhead.

• Performance: The performance aspect suggests that the

time spent on generating a random number is as small as

possible. One common way to measure this is to study

the number of random numbers that can be produced in

a unit time.



TABLE I

COMPARISON OF PROPERTIES

PRNG On-Demand Scalable High Speed
Supply Quality Rank

glibc rand() ×
√

× 5

CURAND
√ √

× 4

CUDPP × ×
√

3

M.Twister ×
√ √

2

Hybrid PRNG
√ √ √

1
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Fig. 1. The case for hybrid computing. The dashed lines of the right figure
denotes the interleaving of computation and idle times.

We now give a comparison of the qualities that are pos-

sessed by the currently available PRNGs in Table I. The speed

ranking in Table I (rank of 1 is fastest), shows the relative time

taken by each PRNG to generate a fixed quantity of random

numbers.

We now turn our attention to the aspect of resource

efficiency of PRNGs on GPUs. We observe that in most

GPGPU based computing, the CPU is practically idle in

the computation process as illustrated in the left portion of

Figure 1. This leads to inefficient resource usage, more so

as the computational power of present generation multicore

CPUs is on the rise. Hence, to improve performance, we use

such a hybrid CPU and GPU system and target full resource

utilization as shown in the right portion of Figure 1. Hybrid

multicore computing is gaining tremendous research attention

of late given that issues such as power and performance

dominate parallel computing. Recent works in this direction

include [28], [27], [3], to name a few. Arriving at an efficient

hybrid PRNG that meets the requirements listed in Table I is

a step in that direction.

B. Our Methodology and Results

Our main result of this work is to design a high quality,

fast, scalable, and on-demand random number generator. We

achieve this by employing random walks on expander graphs.

Each thread performing the walk is essentially executing in-

dependent of other threads. Therefore, our generator is thread-

safe.

To improve the performance of our generator, we employ a

hybrid computing platform consisting of a multicore CPU and

a GPU. Our generator produces 0.07 GNumbers per second.

The results of our generator has been put through rigorous

quality testing using test suites such as the DIEHARD battery

of tests [18] and the TestU01 [17] suite. Our generator passes

most of these tests as reported in Section IV-B.

We also show how to use our PRNG in two applications:

list ranking, and a Monte Carlo based photon migration.

These applications demonstrate the speed of generation and

the quality of the hybrid PRNG respectively. In both these

applications, using our PRNG leads to reduced runtime, and

improvements in quality.

II. OUR HYBRID PLATFORM

Our hybrid platform, see also Figure 2, is a combination

of two devices, an Intel i7 980 and an Nvidia Tesla C1060

GPU. The CPU and the GPU are connected via a PCI Express

version 2.0 link. This link supports a data transfer bandwidth

of 8 GB/s between the CPU and the GPU.

The GPU is viewed as a massively multi-threaded architec-

ture containing hundreds of processing elements (cores). All

of the cores are composed of four stage pipelines. The cores

which are also known as Symmetric Processors (SPs). Each

of the SPs are grouped in an SIMD fashion into a Symmetric

Multiprocessor (SM). So, all of the SMs execute the same

instruction at a particular point of time. The Tesla C1060

has 30 such SMs, which makes for a total of 240 processing

cores. All of these SMs are caplable of running millions of

threads which are scheduled on each of the cores in groups of

32 threads. These groups of 32 threads are called warps. To

program the GPU we use the CUDA API Version 3.2 [23].

For the CPU we use a Intel i7 processor which is a multicore

processor of the Sandy Bridge family of microporcessors.

This processor is the fastest from the in its family with each

core running at 3.4 GHz and having a highest throughput of

109 GFLOPS. For programming the CPU, we use OpenMP

specification 3.0 and ANSI C [15].

Asynchronous concurrent execution model is offered by all

the NVidia GPUs with a compute capability of 1.1 or above.

This allows the GPU kernel calls to be non-blocking and

allows for host execution to overlap with the GPU kernel

computations. Streams support asynchronous data transfer

while the kernel is executing. Hence, not only computation

but also data transfer can be overlapped between the device

and the host.

III. OUR RANDOM NUMBER GENERATION TECHNIQUE

The main idea behind the development of our generator is

to use parallel random walks on an expander graph. As each of

the random walks on the graphs is entirely independent of each

other, any thread of the GPU can make a request for random

number(s) at any point of time. The only operation involved

is to select a neighbor from the expander graph uniformly at

random, perform a walk, and return the destination node as

a random number. This random selection of a neighbor can

be made by using a few random bits. In the following, we

explain our approach in more detail. Implementation details

are presented in Section III-B.

A. Expander Graphs

We now define an expander graph and also describe the

expander graph we use in our construction. Let G(V,E) be an

undirected regular graph of degree d. For a subset of vertices



Fig. 2. The GPU-CPU hybrid platform. The pictures are obtained from http : //www.hothardware.com.

U ⊆ V , let us denote by (U,U), with U = V \ U , the set

of edges that have exactly one endpoint in U and another

endpoint in U . The edge expansion of G, denoted α(G), is

defined as:

α(G) = min
U ⊆ V ;

|U | ≤ |V |/2

|(U,U)|
|U | .

A family of graphs G = {G1, G2, · · · } is called an edge

expander family if there exists a constant c so that for every

G ∈ G, α(G) ≥ c. In our construction of a PRNG, we have

made use of explicit definitions of an expander graph due to

Gabber-Galil [8]. Here we consider the graph G as a bipartite

graph with two independent set of nodes X and Y . For a given

integer m, with n = 2m2, we can assign unique labels of the

form (a, b) ∈ ZZm × ZZm to each of the vertices in X and Y .

A Gabber-Galil expander on n vertices is defined as follows

[8]. The vertices of the graph are tuples of the from (x, y)
for x, y ∈ ZZm. The neighbors of a vertex (x, y) in X can be

found in Y by these labels : (x, y), (x, 2x + y), (x, 2x + y +
1), (x, 2x+y+2), (x+2y, y), (x+2y+1, y), and (x+2y+2, y).
All the above calculations are done modulo m. The expansion

of the graph is shown to be α(G) = (2 −
√

3)/2 (cf. [8]).

It has been shown [11] that random walks on expander

graphs have a rapid mixing property so that the position of the

walk after a certain steps is close to the stationary distribution

of the underlying Markov process.

B. Implementation Details

We initialize a 7-regular Gabber-Galil expander graph G of

n = 265 nodes. With n = 265, each vertex of the Gabber-

Galil expander graph of the form (x, y) can be represented

using 64 bits with x and y being 32 bit each. The random

numbers generated by our construction are the 64 bit vertex

ids of the expander graph G.

We initialize our generator by having each thread start at a

random vertex of G and performing an initial walk of length

64. To select the starting position, we need 64 random bits

for each thread. In our implementation, we make use of the

CPU for this as follows. These random bits are generated

on the CPU and are supplied to the GPU. As current GPUs

support asynchronous memory transfers, we can pipeline the

execution and transfer. The details of this process are explained

in Algorithm 1.

Algorithm 1 InitializeGenerator(G, l, bin)

Input: A 7−regular expander graph G of n nodes, the length

of walk l and some random bits bin
Output: An initialized G

1: CPU :: Generate a random binary stream bin
2: CPU→ GPU :: Transfer bin asynchronously

3: GPU :: for each node u in G do in parallel

4: GPU :: for i = 0 to l
5: b(u) = (int)(bin(t) & (111 << (i ∗ 3))

{t is the Thread ID}
6: v = f(u, b(u)) { f(u, b(u)) gives the b(u)th

7: neighbor of u}
8: u := v
9: endfor

10: endfor

In Algorithm 1, we use labels such as CPU, GPU, and CPU→
GPU. These represents the executions that are happening at the

individual processors at any point of time. We employ these

labels in order to distinguish between the parallel computations

which are being carried out in each of these devices. The label

CPU→ GPU represents the asynchronous data transfer from

the CPU to the GPU. The function f(u, k) which is used in

line 7 returns the kth neighbor of u according to the definition

of the Gabber-Galil expander graph.

In Algorithm 1, we first initialize a graph such that each

of the node can represent a unique 64 bit number. For the

initialization phase, we generate some random numbers using

the CPU rand() utility which in turn calls the LCG present in

the glibc library. As each of the vertices have 7 neighbors

to identify from randomly, it requires only 3 bits to do so. The

CPU streams random bits to the GPU as long as the kernel is

executing, and the GPU has a constant supply of random bits

to perform the walk. The overlap between the CPU and GPU

computation will be explained in Section IV.

Once each thread completes a random walk of length 64,

each thread is now ready to generate random numbers. To

generate each random number, each thread has to essentially

perform another random walk. As these walks are completely

independent, our approach allows for massive parallelism.

This can be done on demand also, unlike other GPU-based

generators such as Mersenne Twister [19].

Let a walk be presently at vertex v. To continue the walk,

we need to select a neighbor of v in G uniformly at random.



This therefore requires few random bits. As earlier, we use

the CPU to generate these random bits and supply them to

the GPU in an asynchronous manner. At the end of the walk,

each thread outputs a 64 bit random number. The details of

this approach are explained in Algorithm 2. The asynchronous

transfer in Line 1 is same as that of Algorithm 1.

Algorithm 2 GetNextRand(G, bin)

Input: The initialized graph G and some random bits bin
Output: A new random number R

1: CPU→ GPU :: Generate and transfer bin asyn-

chronously

2: GPU :: for i = 0 to l
3: b(u) = (int)(bin(t) & (111 << (i ∗ 3))

{here t is the Thread ID}
4: v = f(u, b(u)) {f(u, b(u)) gives the b(u)th

5: neighbor of u}
6: u := v
7: endfor

8: Return v

Threads in an application that requires randomness can call

the GetNextRand() routine to obtain random numbers. The

GetNextRand() routine is described in Algorithm 2. The appli-

cation does not require to pre-specify the number of bits before

executing its kernels. The application has to only initialize the

random number generator as described in Algorithm 1 before

using GetNextRand().

IV. EXPERIMENTAL RESULTS

Our experimental platform is described in Section II. In

Section IV-A we study the speed and quality of our generator

compared to existing generators. In Section IV-B, we study

the quality of the random numbers produced by our generator.

In all cases, the experiments are conducted over repeated trails

and the average values are reported.

A. Performance Analysis

We now compare the performance of our generator to

presently available GPU based generators. Some of the fastest

generators on the GPU are the Mersenne Twister [19], and the

CURAND utility [24]. We have therefore compared against

these generators. In this experiment, we study the time taken

to produce a random stream of N numbers for a given N
ranging from 5 M to 1000 M. The resulting run times are

plotted in Figure 3. In Figure 3, the label “Hybrid Timing”

refers to the timings obtained by our generator. The label

“Mersenne Twister” refers to the generator based on [20].

These timings were obtained by running the example code

which is provided by NVidia with the CUDA toolkit. The

label “CURAND” refers to the generator based on [24] from

the CUDA library. CURAND is also an on-demand variant

which can generate numbers on the fly as requested by an

application when it is used in its Device API mode. We have

considered the Device API for comparison since an on demand

supply of random numbers is supported only on this mode. As

can be seen from Figure 3, the hybrid generator outperforms

both the Mersenne Twister based generator and the CURAND

generator by a factor of 2 in most cases.
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Another aspect of a hybrid algorithm to study is the overall

resource utilization. In our program, the main work units are

(i) an initial source of random bits, FEED, (ii) the transfer

time required to transfer these initial source of random bits,

TRANSFER, and (iii) the generation of random numbers using

random walks on an expander, GENERATE. We map the

FEED work unit onto the CPU and the GENERATE work

unit on the GPU. This is a natural mapping as GENERATE

is massively parallel and hence can be done on the GPU.

With this mapping, TRANSFER corresponds to transferring

data between the CPU and the GPU using the PCI Express

link. In Figure 4, the time taken for each of the above work

units is indicated on the arrows. The arrow with label 6.2 ns

corresponds to the TRANSFER work unit. As can be seen,

the CPU is almost never idle, and the GPU is idle for about

20% during each iteration. The timings shown are for a batch

size of 100 (see also Figure 5) where batch size, S, is defined

as the number of random numbers each thread is generating.

For instance, if N random numbers are to be generated, then

with a block size of S, each of the N/S threads generate S
random numbers each.

81.2 ns

CPU Idle

81.2 ns

CPU :

GPU :

81.2 ns

61.45 ns 61.45 ns

6.2 ns 6.2 ns

86.6 ns

GPU Idle

FEED FEED FEED

GENERATE GENERATE

Fig. 4. The overlapped execution of the work units.

In Figure 5, we study the variation of the timing with the

block size. As we see, the timing is minimum at a work load

of around 100 numbers per thread. This suggests that when

the GPU threads are high but the work load per thread is low

then the utilization of the system is low and the CPU stays

idle for most of the time. Beyond 100 numbers per thread, the

utilization is high but the CPU gets overloaded and the GPU

starts to wait for CPU to transfer random bits. So, the time

taken increases.
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Comparison with rand(): Our hybrid generator can also

work on other multicore architectures with minor program-

matic changes. This is showcased by developing our generator

for a multicore CPU alone. In this case, each core of the CPU

runs threads which perform random walks on the implicitly

defined expander graph.

On the CPU described in Section II, we implemented our

generator using the OpenMP specification 3.0 library. We then

compare the time taken by our generator to that of the standard

glibc rand() which is provided by the Fedora 14 Linux

distribution. The result of this experiment is shown in Figure

6. The label “CPU Rand Time” refers to the time taken by

rand() to generate the required quantity of random numbers.

As can be seen, our generator scales up well compared to

rand(). Further, our algorithm is thread safe.
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B. Quality

For studying the quality of our PRNG, we use several

industry standard statistical tests. For instance, we have taken

the DIEHARD battery of tests based on statistical testing

methods as proposed in [6]. This suite consists of 15 different

statistical tests. Marsaglia [18] implemented these tests so that

these tests can be run for any PRNG easily. Each of the tests

produces a p-value which is a measure of the uniformity in

distribution of these numbers. Each of the p-values are further

verified using Kolmogorov-Smirnov(KS) Test [6]. The KS test

gives a measure of the uniformity of the numbers that are

generated and how well they pass the DIEHARD tests.

TABLE II

QUALITY RESULTS OF DIFFERENT ALGORITHMS

Algorithm DIEHARD Tests KS-Test D
Passed

Hybrid PRNG 15/15 0.167

CUDPP RAND 15/15 0.202

M. Twister 15/15 0.166

CURAND 8/15 0.534

glibc rand() 6/15 0.621

TABLE III

TESTU01 TEST RESULTS

PRNG Test Suite Tests Passed

CURAND
SmallCrush 15/15
Crush 14/15
BigCrush 13/15

M.Twister

SmallCrush 15/15
Crush 13/15
BigCrush 13/15

Hybrid PRNG

SmallCrush 15/15
Crush 14/15
BigCrush 13/15

The DIEHARD tests state that if the values generated by a

PRNG are truly random, then the values are indistinguishable

from a set of uniformly distributed values in the range of [0, 1).
The test statistic p should lie between 0.01 and 0.99 to pass the

test. After the DIEHARD tests are completed, we also looked

at the KS test against a set of uniformly generated numbers.

This test tries to measure the maximal deviation between two

curves drawn on a cumulative distribution function. A low

value indicates the lower deviation from a set of uniformly

distributed values. The test statistic D gives a measure of

how well the generator performs in comparison to the other

generators. As we see from Table II, the KS test result of

our algorithm is comparable to that of Mersenne Twister and

better than that of CURAND.

Apart from the DIEHARD suite, we also use the TestU01

suite. L’Ecuyer and Simard implemented the TestU01 software

library [17] which is a more advanced test than the DIEHARD

tests. This suite contains three different batteries: SmallCrush,

Crush and BigCrush. These three tests are all in the increasing

order of quality. The results obtained from the tests are

tabulated in table III.

As we see from Table III, our generator passes all the tests

in the SmallCrush battery. It is able to pass only fourteen and

thirteen tests in Crush and BigCrush tests respectively. This

is comparable to other presently available PRNGs on GPUs

such as CURAND and the Mersenne Twister based generator.

C. Discussion

One of the interesting aspects of our implementation is the

use of CPU generated random numbers to aid the GPU based

generator. This can be justified by the following arguments

regarding quality and performance.

Our generator based on random walks on expander graphs,

produces quality pseudo random numbers as can be seen from

the results of Section IV-B. The quality of our generator is

better than glibc rand(), and is comparable or better



compared to existing PRNGs on GPUs. Hence, our technique

can be seen an improving the quality of a naive random

number generator. Further, this increase in quality is obtained

by using a little amount of initial randomness. Our technique

has connections to other works on expander graphs such as

probability amplification [21].

To perform a random walk, one has to select a neighbor of

the current position of the walk uniformly at random. This

requires some source of randomness. Using a GPU based

generator for this purpose is not a good solution as it would

still keep the CPU idle. Further, there are no fast, on-demand

GPU based generators. Hence, we make of the CPU to provide

us with these few random bits that are used by the GPU. This

is also helping us improve the performance of our generator.

Our generator is the fastest known PRNG on GPUs as can be

seen from Figure 6.

In our framework, we notice that the GPU is idle for a small

fraction of the time. We are presently using the ANSI C based

rand() for this purpose. This is mainly due to the fact that

there is no fast randomness generator on a multicore CPU.

Our generator, working on a multicore CPU can be used in

the place of rand(). As Figure 6 shows, this would help us

in never keeping the GPU idle.

V. APPLICATION I : LIST RANKING

The problem of list ranking is to find the distance of any

node in a list of n nodes from either end of the list. List

ranking was first identified by Wyllie [31] as an important

primitive of parallel computing. Considering the importance

of the problem, there have been many recent solutions for list

ranking on modern architectures such as the Cell BE [2], GPU

[30], and a more recent CPU+GPU hybrid solution [3].

We follow the three step method from [3] where the first step

is to reduce the size of the original list to a very small one. This

is done by repeatedly identifying a large fractional independent

set of nodes using techniques from fractional independent sets

[12]. In the second step, the list of the remaining nodes is

ranked using the algorithm of Hellman and JaJa [10], as is

done in [3]. Finally, the nodes removed in step 1 are re-inserted

to get the final ranks of all nodes in the list. A fractional

independent set of a graph G is an independent subset U of

low degree nodes of G such that |U | is at least a constant

fraction of |V |.
For a linked list L of n nodes, to compute a fractional

independent set (FIS) in parallel, we proceed as follows. Each

node v picks a bit, b(v) ∈ {0, 1}, uniformly at random and

independent of other nodes. Then, we say that a node v
belongs to the FIS if b(v) = 1 and neither the predecessor nor

the successor of v also chose 1. It can be seen from relatively

simple arguments (cf. [12]) that with high probability, the

FIS constructed above has at least n/c nodes for c ≥ 24.

Applying this repeatedly results in a list of n/ log n nodes.

Our complete algorithm to identify nodes to be removed so

that only n/ log n nodes remain is shown in Algorithm 3. The

only difference between Algorithm 3 and the Phase I of the

list ranking algorithm in [3] is in the generation of random

numbers. However, as one does not know exactly how many

nodes are removed in each iteration of Line 3 of Algorithm 3,

a PRNG that can work with efficiently on demand is needed.

This application therefore serves to illustrate the on demand

property of our PRNG.

Algorithm 3 ReduceList( L,G)

Input: A list L of size n and a 7 regular graph G
Output: A sublist of n/ log n nodes

1: Phase I : Pre-processing

2: CPU :: Initialize 7-regular graph G by Algorithm 1

3: for r iterations in parallel do

4: CPU :: Generate and transfer asynchronously ran-

dom binary stream bin
5: GPU :: for each node u in the list do in parallel

6: temp=getNextRand(bin)

7: Let b(u) be the bit choice of node u from temp
8: if b(u) = 1 and b(pred(u)) = 0 and

9: b(succ(u)) = 0 then

10: Remove node u with proper book-keeping

11: endif

12: endfor

13: end for

We now describe Algorithm 3 in more detail. We first

initialize a 7-regular Gabber-Galil expander graph. This graph

is then used to generate random numbers as required. As

can be seen in Line 6 of Algorithm 3, each thread can call

getNextRand() to obtain a new random number that will

be used by this thread. Since this operation is done only for

those nodes in L that are not removed in previous iterations,

the number of such calls is not known apriori. One can only

say that the number of nodes in L reduces by a constant factor

in each iteration. Further, the GPU compute time is overlapped

with an asynchronous transfer from CPU.

The ability to efficiently produce random numbers on de-

mand in our current approach offers a big advantage to our

implementation compared to the hybrid implementation of [3].

In [3], the CPU generates a quantity of random numbers that

is predetermined to be an upper bound on the number of nodes

remaining in the list at each iteration. We will show shortly in

our results that an on demand generation reduces the runtime

by 40%.

Once we have a list of size n/ log n, we continue with the

approach of Phases II and III of the algorithm in [3].

A. Results

The experimental platform we use is described in Section

II. We store the initial list in a array and pre-compute the pre-

decessor and successor array before we start the experiments.

We use random lists for experimentation as the random lists

are the most difficult to rank due to their irregular nature of

memory access patterns.

In our experiments we vary the list size to upto 128 million

elements and compare the results with other relevant works [3].

The results of [3] are presently the fastest known solution for

the problem under study. We also compare our results with two

other techniques where the glibc random number generator



used in [3] is replaced with a generator based on Mersenne

Twister. This is referred in Figure 7 as “Pure GPU MT“ and is

hence a pure GPU implementation without any involvement of

the CPU. To summarize, our generator outperforms the fastest

running algorithm by almost 40%.
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Fig. 7. The timing comparison with the other algorithms.

It can be seen from Figure 7, that the improvement in

runtime for reducing the list to a size of n/ log n is due to two

factors. Firstly, using hybrid algorithms helps by bringing also

the CPUs into the computation process. Secondly, an efficient

on demand PRNG helps in reducing the runtime further as

can be seen from the plots labeled Hybrid-glibc and Hyrbid-

PRNG. Given that Phases II and III of list ranking take only

20% of the overall time, using Algorithm 3 for Phase I of list

ranking as described in [3] would result in an improvement

of 50% in the runtime of list ranking over various list sizes

ranging up to 128 M nodes.

VI. APPLICATION II : HYBRID MONTE CARLO

Monte Carlo methods are used in several areas of science to

simulate complex processes, to validate simpler processes, and

to evaluate data. In Monte Carlo (MC) methods, a stochastic

model is constructed in which the expected value of a certain

random variable is equivalent to the physical quantity to be

determined. The expected value of this random variable is

then determined by the average of many independent samples

representing the random variable. These independent samples

are constructed by the use of random numbers following the

distribution of that random variable.

Photon migration, i.e., light propagation in a random media,

is an area where MC simulations are proven as a gold standard

[4]. In this method, several photons are launched with their

position and direction initialized to either zeros (for some

pencil beam initialized at the origin) or some random numbers.

A variance model is used for simulation, where the absorption

of photons is simulated by reducing weights and not discrete

termination. At every step a photon takes, a fraction of its

weight is absorbed, and then photon packet is scattered. The

new direction and weight of photon are updated. After several

such steps if the remaining weight of a photon is below a

certain threshold, the photon is terminated.

To summarize, the rules of photon migration can be ex-

pressed as step-size of photon movement between sites of

photon tissue interaction, and the angles of deflection in the

photons trajectory in case of a scattering event. The method is

statistical in nature and we need to study the propagation of a

large number of photons. Due to this, the method requires a

large amount of computation time. An earlier work of photon

migration on GPU [1] does this simulation across multiple

layers of absorption. This work uses a multiply with carry

(MWC) based RNG to initialize the weights of the photons.

We use the same implementation to show that the simulation

can happen in a much better way when it is plugged in with

the hybrid PRNG.

A. Our solution

We try to solve the problem of photon migration using

the hybrid PRNG which has been explained in the previous

sections. The hybrid PRNG supply the random numbers which

are used to initialize all the simulation kernels used. There are

specifically three simulation kernels which are used to simulate

the three different layers of the MC simulation. Our hybrid

PRNG supplies the values which are required at each layer.

The PRNG is the heart of the multi-layer simulation of

photons. Each of the initial weights of the photons must be

set at a random value which should be generated independent

of each other in order to minimize the number of weight

clashes that might happen at the different layers. These clashes

correspond to certain atomic operations. The better quality

of random numbers ensure that there will be lesser clashes

and hence lesser serialization will occur. The hybrid PRNG

works completely in a data parallel way which ensures that

whenever a call for the PRNG is made, it supplies a random

number irrespective of that at the other thread calls. The

algorithm proceeds in an iterative fashion where a fixed

quantity of photon packets are processed in each iteration.

This provides an ideal setting for the PRNG to work as the

GPU kernel execution times can be used to supply the graph

with fresh random bits which shall be used for random walks

in subsequent iterations. Also, the high quality of the random

numbers supplied allows for more number of photons to be

simulated at each layer.

Algorithm 4 MCPhotonMigration(P,LayerParams)

Input: Number of photons P and parameters of layers

Output: Reflectance parameters and absorbed fraction

1: Initialize 7-regular graph G by Algorithm 1

2: CPU :: Generate and transfer asynchronously random

binary stream bin.

3: GPU :: Launch a photon after initializing weights with

getnextRand()

4: While the photon survives

5: GPU :: Remove the absorbed weight

6: GPU :: Scatter the photon

7: CPU :: Generate and transfer new bin in an

8: overlapping manner

9: GPU :: noOfUsedPhotons+ = 1
10: If noOfUsedPhotons ≤ maxNoOfPhotons
11: Goto step 3.

12: end while
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In Algorithm 4, we see the pseudo code of the algorithm

applied. The PRNG is used in the algorithm by using an

overlap between the CPU and the GPU for generating and

transferring the required random bits. As the generation is not

related to the GPU kernels, we have optimally made the CPU

work towards re-populating the bin array while the GPU is

busy in steps 5 and 6. The result of the experimentation can

be observed from Figure 8. The number of photons is varied

from 1 M to 256 M. The Y-axis shows the time taken by

our method, labeled ‘HybridResult’, and the time taken by the

implementation of [1], labeled ‘Original’. We can attribute this

result to the following reasons:

• Reduced memory transaction overhead: As the PRNG

works in an hybrid fashion, the actual memory overhead

of accessing the global memory for getting random

numbers is minimized. This is due to the reason that our

implementation does not use any extra space for storing

the random numbers unlike [1]. In our model, random

numbers are generated on the fly. Hence a certain speedup

is obtained.

• Lesser number of clashes in atomic operations: The

quality of the hybrid PRNG has been already discussed in

Section IV-B. This is another advantage which the hybrid

PRNG offers to the MC simulation. As all the threads

independently supply high quality random numbers to

initialize the weight of photons, the number of clashes

happening is subsequent layers is reduced. By clashes, we

mean the behavior of two photons as a single one due to

having the same weight. As a higher amount of photons

have unique weights, they are independently simulated.

The weights of these photons quickly fall below the

threshold and are terminated. As a result, if we are aiming

to simulate a fixed number of photons, then all of them

are simulated at a much lesser amount of time. This

contributes towards an overall speedup of around 20%.

VII. RELATED WORK

One of the early implementation of PRNGs for GPUs is

the Mersenne Twister (MT) first proposed in [20] and later

extended in [19]. Both these implementations however require

that the quantity of random numbers to be pre-specified.

In [29], authors have given a source of randomness nec-

essary for graphics applications based on the MD5 algorithm

proposed by Rivest [5]. However, one major drawback of

this is that CUDPP Rand usually do not scale to very large

requirements.

Monte Carlo simulations require a good source of random

numbers and has been widely researched in the GPGPU

community. In [7], the author gives an analysis of several

random numbers generation techniques which are suitable for

Monte Carlo simulations.

VIII. CONCLUSIONS

In this work, we have presented an efficient pseudo random

generator for GPUs. Our generator satisfies all the conditions

that are deemed important. Our generator also combines the

computational abilities of multicore CPUs and GPUs in a

clever way to improve resource utilization. In future, we wish

to study cryptographic applications that often require high

quality random numbers.
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