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Abstract

This paper focuses on anti-magic labellings of planar graphs of type
(a, b, c) introduced by Lih (Util. Math. 24 (1983), 165–197). We show
that a certain class of planar graphs defined using the complete graphs
and a class of planar graphs defined using the complete bipartite graphs
are (1,1,0) and (1,1,1)-anti-magic under certain mild conditions.

1 Introduction

We focus on connected undirected graphs G = (V, E). In its simplest form a graph
labeling is a bijection f from a subset of the elements of a graph to the set of positive
integers. The elements of a graph are its vertices, edges, and faces if the graph is
planar. For a vertex labeling, the domain of f is the set of vertices. For an edge
labeling the domain of f is taken to be the set of edges. For simplicity, we let n = |V |
and m = |E|. For all other standard graph-theoretic notation we refer the reader
to [17].

The origin of labellings can be attributed to Rosa [12] or Graham and Sloane
[9]. Several properties of the bijection f are worth studying from a purely combi-
natorial perspective as well as from an application point of view. Graph labellings
have found application in partitioning complete graphs into isomorphic subgraphs,
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in combinatorial and algebraic structures such as cyclic difference sets, character-
izing neo-fields, generalized and near-complete mappings [5, 6]. Other applications
of labellings include coding theory, network addressing, database management, and
astronomy [4, 7, 5, 6, 16, 10].

A class of labellings called magic labellings motivated by magic squares was in-
troduced by Sedlacek [13]. Lih [11] extended the notion of magic labellings of planar
graphs to assign labels also to the faces of a planar graph. Lih defines a magic
(anti-magic) labeling of type (1,1,1) of a planar graph G = (V, E) as a bijection
f : V ∪ E ∪ F → {1, 2, . . . , |V | + |E| + |F |} so that for each interior face the sum of
the labels of the face, the edges of the face, and the vertices of the face, is fixed (resp.
distinct). Similarly a magic (anti-magic) labeling of type (1,1,0) for a planar graph
is defined as a bijection from V ∪E to {1, 2, . . . , n+m} so that for each interior face
the sum of labels of the vertices and the edges of the face is fixed (resp. distinct).
A subclass of these magic labellings involving faces is that of consecutive labellings
where all the faces of a certain length get consecutive labels.

1.1 Our Results

In this paper, we show that a certain class of planar graphs obtained from the class
of complete graphs are (1,1,0) and (1,1,1)–antimagic. We also define a class of planar
graphs derived from the class of complete bipartite graphs and show that the class
is (1,1,0) and ( 1,1,1)–antimagic.

Both the results are based on an embedding of the planar graphs in question.
Hence the results require careful consideration to arrive at a proper embedding and
then a labelling so as to show that the class is antimagic of a certain type. The labels
we produce are also consecutive.

1.2 Organization of the Paper

The rest of the paper is organized as follows. Section 2 introduces the class of planar
graphs Pln and shows that the class is (1,1,0) and (1,1,1)–antimagic. Section 3
defines the class of planar graphs Plm,n obtained from complete bipartite graphs and
shows that the class is (1,1,0) and (1,1,1)–antimagic. The paper ends with some
concluding remarks.

2 The Class Pln of Planar Graphs

In [1], Babujee defines a class of planar graphs obtained by removing certain edges
from the complete graphs. The class of planar graphs so obtained are denoted by Pln
and contain the maximum number of edges possible in a planar graph on n vertices.
We report the definition from [1].

Definition 2.1 Let Kn be the complete graph on n vertices Vn = {1, 2, . . . , n}. The
class of graphs Pln has the vertex set Vn and the edge set En = E(Kn) \ {(k, ℓ) : 3 ≤
k ≤ n − 2, k + 2 ≤ ℓ ≤ n}.
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The embedding we use for Pln is described as follows. Place the vertices v1, v2, . . . ,

vn−2 along a vertical line in that order with v1 at the bottom and vn−2 at the top
as shown in Figure 1. Now place the vertices vn−1 and vn as the end points of a
horizontal line segment (perpendicular to the line segment used for placing the other
n − 2 points) with vn−1 to the left of vn so that the vertices vn, vn−1, and vn−2 form
a triangular face. See Figure 1 for an illustration. The edges of the graph Pln can
now be drawn without any crossings [17]. All the faces of this graph are of length 3.
From now on, in this section, when we refer to the faces by the vertices of the face,
we use the vertex numbers from the embedding described.

1v

2v

l
v

l +1
v

nvn −1v

n −2v

Figure 1: The class Pln.

Theorem 2.2 The graph Pln is (1, 1, 0)–antimagic where n ≥ 5.

Proof. Consider a planar class Pln(V, E) with n vertices v1, v2, . . . , vn and 3n − 6
edges. Define a bijective function f from V ∪ E to {1, 2, . . . , 4n − 6} as follows.

The labelling of the edges are:

f(vi, vi+1) = i, for 1 ≤ i ≤ n − 1.
f(vn, vn−2) = n

f(vn−1, vi) = 2n − 2 − i, for 1 ≤ i ≤ n − 3.
f(vn, vi) = 3n − 5 − i, for ≤ i ≤ n − 3.

The labelling of the vertices are:

f(vi) = 3n − 6 + i for 1 ≤ i ≤ n.

It may be seen that the number of interior faces in Pln is 2n − 5. The interior
face consisting of vertices vn, vn−1, vn−2, vn has sum equal to 15n − 24. Another
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n − 3 interior faces consisting of vertices vℓ, vℓ+1, vn−1, vℓ have sum 14n + ℓ − 23
for 1 ≤ ℓ ≤ n − 3 , and the rest of the n − 3 interior faces consisting of vertices
vℓ, vℓ+1, vn, vℓ have sum 16n + ℓ − 28, for 1 ≤ ℓ ≤ n − 3. All these sums can be
verified to be different.

Hence, the graph Pln, n ≥ 5, is (1, 1, 0)–antimagic. ⊓⊔

Theorem 2.3 The graph Pln is (1, 1, 1)–face antimagic where n ≥ 5.

Proof. Consider a planar class Pln(V, E) with n vertices v1, v2, . . . , vn and 3(n− 2)
edges and |F | = 2n − 5 interior faces. Define a bijective function f from V ∪ E ∪ F

to {1, 2, . . . , (6n − 11)} as follows. The labelling of the edges are:

f(vi, vi+1) = i, for 1 ≤ i ≤ n − 3.
f(vn−2, vn−1) = n − 1
f(vn−1, vn) = n − 2
f(vn, vn−2) = n

f(vn−1, vn−k) = n + 2k − 5, for 3 ≤ k ≤ n − 1.
f(vn, vn−k) = n + 2k − 4, for 3 ≤ k ≤ n − 1

The labelling of the vertices are:

f(vi) = 3n − 6 + i, for 1 ≤ i ≤ n.

The labelling of the faces are as follows. For the face bounded by vn−1, vn,

vn−2, vn−1 the label is 4n − 5. For the face bounded by vn−1, vn−1−ℓ, vn−2−ℓ, vn−1

the label is 4n − 6 + 2ℓ for 1 ≤ ℓ ≤ n − 3. For the face bounded by vn, vn−1−ℓ,

vn−2−ℓ, vn the label is 4n − 5 + 2ℓ, ℓ = 1, 2, . . . , (n − 3).
It may be seen that the number of interior faces in Pln is 2n − 5. The interior

face consisting of vertices vn, vn−1, vn−2, vn has sum equal to 19n − 29. Another
n− 3 of these interior faces consisting of vertices vn−1, vn−1−ℓ, vn−2−ℓ, vn−1 have sum
19n + 3ℓ − 34 for 1 ≤ ℓ ≤ n − 3. The rest of the n − 3 interior faces consisting of
vertices vn, vn−1−ℓ, vn−2−ℓ, vn have sum 19n + 3ℓ − 30, for 1 ≤ ℓ ≤ n − 3. All these
sums can be verified to be different.

Hence, the graph Pln, n ≥ 5 is (1, 1, 1)–face antimagic. ⊓⊔

3 The Class Plm,n of Bipartite Planar Graphs

We define another class of planar graphs which is obtained from the complete bipar-
tite graph Km,n, m, n ≥ 3 by removing some edges to make it planar graph, which is
called a bipartite planar class and it is denoted by Plm,n. The graph Plm,n has the
maximum number of edges permissible in a planar bipartite graph.

Definition 3.1 Let Km,n(Vm, Un) be the complete bipartite graph on Vm = {v1,

v2, . . . , vm} and Un = {u1, u2, . . . , un}. The class of graphs Plm,n(V, E) has the vertex
set Vm ∪ Un and the edge set E = E(Km,n(Vm, Un)) \ {(vℓ, up) : 3 ≤ ℓ ≤ m and 2 ≤
p ≤ n − 1}.
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This graph is a bipartite planar graph with maximum number of edges 2m+2n−4
and m + n vertices1. We now describe the embedding we use for our proofs. Place
the vertices u1, u2, . . . , un in that order along a horizontal line segment with u1 as the
left-endpoint and un as the right end-point as shown in Figure 2. Place the vertices
vm, vm−1, . . . , v3, v1 in that order along a vertical line segment with vm as the top
end-point and v1 as the bottom end-point so that this entire line segment is above
the horizontal line segment where the vertices u1 through un are placed. Finally,
place v2 below the horizontal line segment so that the vertices v1, uk, v2, uk+1 form
a face of length 4 for 1 ≤ k ≤ n − 1. Notice that though we talk about placement
along a line segment, no edges other than those mentioned in the definition are to
be added. From now on, in this section, when we refer to the faces by listing the
vertices forming that face, we use the vertex numbers given by the above embedding.

v
2

vm

u
2u1 −1nu

v
4

v
3

v
1

un

Figure 2: The class Plm,n.

Theorem 3.2 For all m, n ≥ 3 the graph Plm,n is (1, 1, 0)–antimagic provided either
m is odd or m is even and 4n + m 6≡ 0 (mod 6).

Proof. Consider the planar class Plm,n(V, E) with m + n vertices v1, v2, . . . , vm,

u1, u2, . . . , un and 2m + 2n − 4 edges. Define a bijective function f from V ∪ E to
{1, 2, . . . , (3m + 3n − 4)} as follows.

1From Euler’s formula concerning planar bipartite graphs G = (V,E), |E| ≤ 2|V | − 4 as each
face has length at least 4.
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The labelling of the edges are:

f(v1, ui) = i, for 1 ≤ i ≤ n.

f(v2, ui) = n + i, for 1 ≤ i ≤ n.

f(u1, vj) = 2n + j − 2, for 3 ≤ j ≤ m.

f(un, vj) = 2n + m + j − 4, for 3 ≤ j ≤ m.

The labelling of the vertices are:

f(ui) = 2n + 2m − 4 + i, for 1 ≤ i ≤ n.

f(vi) = 3n + 2m − 4 + i, for 1 ≤ i ≤ m.

The graph Plm,n has m+n−3 interior faces. The interior face consisting of vertices
u1, v1, un, v3, u1 has sum 16n + 9m − 10. A further n − 1 faces consisting of vertices
v1, uk, v2, uk+1, v1 have sum 12n + 8m + 6k − 10 for 1 ≤ k ≤ n − 1. The remaining
m− 3 faces consisting of vertices u1, v2+ℓ, un, v3+ℓ, u1 have sum 19n + 10m + 6ℓ− 12
for 1 ≤ ℓ ≤ m − 3. All these sums can be seen to be different if either m is odd or
m is even and 4n + m 6≡ 0 (mod 6).

So the graph Plm,n is (1, 1, 0)–antimagic provided either m is odd or m is even
and 4n + m 6≡ 0 (mod 6). ⊓⊔

Theorem 3.3 For all m, n ≥ 3 the graph Plm,n is (1, 1, 1)–face antimagic provided
either m > 2n − 7 or 5n + m 6≡ 0 (mod 7).

Proof. Consider a planar class Plm,n(V, E) with m + n vertices and 2m + 2n − 4
edges and |F | = m+n−3 interior faces. Define a bijective function f from V ∪E∪F

to {1, 2, . . . , 4n + 4m − 7} as follows. The labels of the edges and the vertices are
same as in the proof of Theorem 3.2 but are however repeated here for the sake of
clarity.

The labelling of the edges are:

f(v1, ui) = i, for 1 ≤ i ≤ n.

f(v2, ui) = n + i, for 1 ≤ i ≤ n.

f(u1, vj) = 2n + j − 2, for 3 ≤ j ≤ m.

f(un, vj) = 2n + m + j − 4, for 3 ≤ j ≤ m.

The labelling of the vertices are:

f(ui) = 2n + 2m − 4 + i, for 1 ≤ i ≤ n.

f(vi) = 3n + 2m − 4 + i, for 1 ≤ i ≤ m.

The labelling of the faces are as follows. For the face bounded by v1, uk, v2,

uk+1, v1 the label is 3n + 3m − 4 + k for 1 ≤ k ≤ n − 1. For the face bounded by
u1, v1, un, v3, u1 the label is 4n+3m−4. For the face bounded by u1, v2+ℓ, un, v3+ℓ, u1

the label is 4n + 3m − 4 + ℓ for 1 ≤ ℓ ≤ m − 3.
The graph Plm,n has m+n−3 interior faces. The interior face consisting of vertices

u1, v1, un, v3, u1 has sum 20n + 12m− 14. A further n− 1 faces consisting of vertices
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v1, uk, v2, uk+1, v1 have sum 15n + 11m + 7k − 14 for 1 ≤ k ≤ n − 1. The remaining
m − 3 faces consisting of vertices u1, v2+l, un, v3+ℓ, h1 have sum 23n + 13m + 7ℓ− 16
for 1 ≤ ℓ ≤ m − 3. All these sums can be seen to be different if either m > 2n − 7
or 5n + m 6≡ 0 (mod 7).

Hence, the graph Plm,n is (1, 1, 1)–face antimagic provided either m > 2n − 7 or
5n + m 6≡ 0 (mod 7). ⊓⊔

4 Conclusions

We have shown that the class of planar graphs introduced in Section 2 is (1,1,0)
and (1,1,1)–antimagic. Similar results are shown for the class of bipartite graphs
introduced in Section 3.

Lih’s definition of magic and anti-magic labellings of type (a, b, c) for planar
graphs, was extended by Bača and Miller [2, 3] as follows. Define the weight of a
face under a (1, 1, 1) labeling as the sum of the labels of the face, the edges, and
the vertices of the face. A labeling of plane graph G is called d–antimagic if for
every ℓ the weights of faces of length ℓ form an arithmetic progression. It would be
interesting to see if any of these classes are d–antimagic [3] for any value of d.
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