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Abstract—Distributed algorithms for computing a maximal
independent set of a graph have been very popular in the research
community. Starting with the algorithm of Luby dating back t o
25 years, several researchers have focussed on distributedMIS
algorithms for general graphs with little success. Only recently,
Métevier et al. have proposed an algorithm for MIS in the
distributed setting with a round complexity that matches Luby’s
algorithm asymptotically.

However, very little is known about the relative performance
of the algorithm of Luby and M étevier in practice. Such a study
can throw light on some aspects of the algorithms that are not
brought out by a theoretical analysis. In this paper, we compare
implementations of the algorithm of Luby and Métevier and study
their behavior on a class of random graphs and bipartite graphs.
Further, we study how varying the probability that a node wishes
to join the MIS in the case of Luby’s algorithm affects the number
of rounds required.

I. I NTRODUCTION

A Maximal Independent Set (MIS) in a graphG = (V, E)
is a subsetS ⊆ V such thatS is maximal and nodes in
S are mutual non-neighbors. Computing an MIS is one of
the fundamental problems in distributed computing and has
attracted the attention of a vast amount of research [3], [1], [4],
[5]. The best known algorithm so far for general graphs are
the algorithm of Luby [3] that runs inO(log n) probabilistic
rounds wheren is the number of nodes in the graph. Only
recently, Métivier et al. [4] proposed another algorithm that
too has anO(log n) round complexity.

Despite the immense research interest in distributed algo-
rithms for MIS, very little is known on how these algorithms
work in practice. For instance, the algorithms of both Luby
[3] and Métivier et al. [4] have requireO(log n) distributed
rounds asymptotically. They are to date the fastest known
algorithms for computing an MIS in a general graph. The
approach of these two algorithms, though both are randomized,
is slightly different. Métivier’s algorithm considers a node
to be in MIS if the random choice of this node is a local
maxima. The algorithm of Luby however considers a node to
be in MIS as follows. Each node opts to be in MIS with a
probability inversely proportional to its degree. In case of ties,
i.e., edges with both end points opting to be in the MIS, then
the algorithm prefers higher degree vertices to be in the MIS.
Both algorithms proceed in a similar way by removing nodes
selected in one round along with their neighbors.

An experimental study of the relative speed of algorithms
can offer several lessons. Especially in the context of graph
algorithms, one can study the behaviour of the algorithms
on various graph classes. It is possible that an algorithm
is much faster on some graph classes compared to another

algorithm. Similarly, it is sometimes the case that distributed
graph algorithms can finish in fewer rounds than that given
out by the analysis. Finally, in the case of MIS algorithms,
maximality does not impose any constraints on the size of
the MIS produced by a particular algorithm. An experimental
study can highlight the difference in the sizes of the MIS
produced by different algorithms.

In this paper, we focus on the algorithms of Luby [3]
and the algorithm of Métivier et al. [4] to find an MIS in
a general graph. We consider parameters such as the number
of rounds needed by the algorithms and the size of the MIS
produced. We also consider several graph classes ranging from
random graphs, bipartite graphs, and regular graphs. Further,
we study the analytical and experimental effect of modifying
the probability a node chooses to join the MIS in Luby’s
algorithm [3]. Our study in general indicates that the algorithm
of Métivier outperforms the algorithm of Luby by a factor of
2. It is surprising however that the size of the MIS produced
does not differ significantly in both algorithms.

The rest of the paper is organized as follows. In Section II,
we describe the algorithms of Luby [3] and Métivier et al. [4].
Section III discusses our experiments and their results. Section
IV describes a change to Luby’s algorithm and its effect on
the runtime. The paper ends with some concluding remarks in
Section V.

II. PRELIMINARIES

Below we describe both the algorithms and give pseudo
code for them.

A. Luby’s MIS

Using Luby’s algorithm, a maximal independent setI of
verticesV of a graphG is computed in an incremental fashion
as follows. In each round, every currentlyactive vertex
selects itself with probability1/2d(v) whered(v) denotes the
current degree ofv, that is the number ofactive neighborsv
has. If two neighborsv andw get selected in the same round,
then the node with smaller degree discards its earlier selection,
ties are broken arbitrarily. Now it is ensured that all the
vertices still selected are independent, that is no two of them
are neighbors. So we can include them in MIS and remove
them and their neighbors from the graph, thereby making
them inactive and excluding them from consideration in
remaining rounds. This goes on until all the vertices have been
removed from the graph. It can be proved that expected number
of rounds required to get an MIS (when all the vertices have
been removed from the graph) isO(log n), n being the number
of vertices in the original graph. Below we give the pseudo
algorithm for Luby’s MIS.



Algorithm MIS-Luby(G = (V, E))
Begin
1. I ← φ; G′ ← G
2. while (G′ is not empty) do
3. Choose a random set of verticesS ∈ G′ by

selecting each active vertex v independently
with probability 1/2d(v)

4. For every edge(u, v) ∈ E(G′) if both endpoints
are inS; then remove the vertex with lower
degree fromS(Break ties arbitrarily)

5. I ← I ∪ S, G′ ← G′ \ (S ∪N(S))
i.e. G′ is the induced subgraph on
V ′ \ (S ∪N(S)) whereV ′ = V (G′)

6. OutputI
End

There are two modifications to Luby’s algorithm whose
impact is also studied. One such modification is to use a tie-
breaking rule when two nodes are selected in the same round.
We study two versions in this modification.

1) LubyRandom: In version LubyRandom, we use a
random tie breaking rule.

2) LubyHighID: In version LubyHighID, we select the
node with a higher identifier.

In a second modification we introduce a technique where
nodes that are stillawake choose with a certain probability
to participate in a given round. This probability is varied
from 1/2d(v) to 1/8d(v). This version is termed asLuby-
WakeSleep.

B. Métivier’s MIS

Métivier’s MIS algorithm has the same bound on number
of rounds required as of Luby’s. In each round of Métivier’s
algorithm, theactive vertices choose a random number.
Subsequently, every vertex sends and receives the random
number chosen by its neighbors in this round. Only the vertices
which have the maximum number in the neighborhood remains
selected. It is trivial to see no two vertices which are neighbors
can be selected together in one round. Hence the set of nodes
selected in any round will be independent. This set is included
in the MIS and these vertices along with its neighbors are
removed from the graph, hence are not considered in the
remaining rounds. This goes on until there are no more vertices
in the graph. The independent set selected will be maximal
since every node in the graph is removed is either in the set
or has a neighbor in the set. It can be proved that Métivier’s
MIS is also expected to finish inO(log n) rounds. Below we
present the pseudo code of the algorithm.

Algorithm MIS-Metivier(G = (V, E))
Begin
1. I ← φ; G′ ← G
2. while (G′ is not empty) do
3. S ← φ
3. Every vertexv ∈ G′ selects a random numberrv

4. If v has a local maximum, addv to S.
5. I ← I ∪ S, G′ ← G′ \ (S ∪N(S)) i.e. G′ is the

induced subgraph onV ′ \ (S ∪N(S)) ; V ′ = V (G′)
6. OutputI
End

C. Networkx

We useNetworkx [2] to generate graphs. NetworkX is a
Python language software package for the creation, manip-
ulation, and study of the structure, dynamics, and functions
of complex networks. We compare Luby’s and Métivier’s
algorithm on random, random regular as well as bipartite
graphs of various sizes. Below we show the prototypes of
functions ofNetworkxused to compute required graphs.

gnp random graph(n, p, seed=None, directed=False):
Returns a random graphG(n, p) with n vertices. It chooses
each of the possible edges with a probabilityp in the graph.

random regular graph(d, n, seed=None): Returns a ran-
dom regular graphG(d, n) with n vertices each havingd
degree.

bipartite random graph(n, m, p, seed, directed): Returns
a random bipartite graphG(n, m) with n nodes in its first
bipartite set,m in the second set andp being the probability
of creating an edge between two nodes in different set.

III. E XPERIMENTS AND RESULTS

We implemented the algorithms of Luby and Métivier
et al. in ANSI C. The program is written as a sequential
program. The actions of each node is simulated by a sequential
execution one after the another. This does not affect the
behavior of the algorithms and since the measure of interestis
the number of rounds, this does not affect the correctness of
the experiments. For generating random numbers, we used the
output of the SHA algorithm1 as a random number between 0
and 1, both inclusive. The output of SHA is known to possess
better uniformness properties compared to the standardrand
function in ANSI C.

While presenting the results of the experiments we per-
formed each experiment multiple times depending on the size
of the instance and averaged the results. This gives us enough
confidence on the validity of the empirical analysis. Since we
can compare the number of rounds independent of the machine
speed and characteristics, we do not report on the exact details
of the machine.

A. Results

In our experiments, we use a variety of graph classes
including random graphs, bipartite graphs, and regular graphs.
The results of our study on these graphs are presented in the
following subsections.

1) Random Graphs:We first show the number of rounds
taken by the two algorithms on sparse random graphs gener-
ated withp = 0.2 in Figure 1. The plot labelledLubyHighID
represents Luby’s algorithm with a tie breaking rule prefers
the larger vertex ID. As can be seen, this does not have
much impact on the number of rounds compared to the
LubyRandom version. It can also be noticed from Figure 1
that Métivier’s algorithm runs faster than all variants ofLuby’s
algorithm. The difference in the two algorithms is roughly a
factor of 2.

1see http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-
512.pdf
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Fig. 1. Luby vs Métivier on Sparse Random graphs,p = 0.2.

A similar effect can be seen on random graphs generated
with a slightly higher probability of0.5. This result is shown in
Figure 2. As can be seen, the version with a wakeup probability
takes more rounds. It therefore seems that having nodes forgo
a round probabilistically is not helping break symmetry.
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Fig. 2. Luby vs Métivier on Dense Random graphsp = 0.5.

2) Regular Graphs:Another class of graphs that we experi-
mented with is random graphs with a regular degree. This helps
us study if all nodes having the same probability of being in
an MIS has any effect on the number of rounds required by the
algorithms of Luby and Métivier. We experimented with both
sparse and dense random regular graphs. The results of our
experiments are shown in Figure 3 for sparse random regular
graphs and in Figure 4 for dense random regular graphs. As can
be seen in this case too, a random tie breaking rule works better
for implementing Luby’s algorithm. Further, having a wakeup
probability is not helpful. Finally, the algorithm of Métivier
is faster than Luby’s algorithm by a factor of 2. Moreover,
sparse graphs are easy to break symmetry in compared to dense
graphs.

3) Bipartite Graphs:Another class of graphs that we used
in our experiments are bipartite graphs. We generated bipartite
graphs with equi-sized partitions and also with unequal-sized
partitions. The results of this experiment are shown in Figure
5. It is noticed that both algorithms behave in a near-similar
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Fig. 3. Luby vs Métivier on Sparse Random Regular graphs with degree3.

 0

 5

 10

 15

 20

 25

 30

 0  2000  4000  6000  8000  10000

R
o
u
n
d
s
 
r
e
q
u
i
r
e
d

Number of Vertices

Luby vs Metivier on Random Regular Dense Graphs

LubyHighID
Metivier

LubyRandom
LubyWakeSleep

Fig. 4. Luby vs Métivier Dense Random Regular graphs with degree30.

fashion in the case of bipartite graphs. Perhaps, this can be
explained by the fact that bipartite graphs have a large MIS in
general and this is helping break symmetry quickly.

IV. CHANGING THE SELECTION PROBABILITY IN LUBY ’ S
ALGORITHM

Let the probability for a nodev with degreed(v) to get
selected in a round be1/cd(v) for a constantc. Let us define a
vertexv to be agoodvertex if at least1/3rd of its neighbors
have degree less thand(v). We also define an edge to be a
good edge if at least one endpoint of it is a good vertex.

Every good vertex has a lot of low degree vertices whose
degree is bounded byd(v). So with good probability at least
one of these vertices will make it to the independent Set
thereby deleting good vertex and therefore good edges.

Lemma 1:For every good vertexv with d(v) > 0, the
probability that some neighborw of v gets marked is at least
1− e

−1

3c .

Proof: Consider one such neighborw. Probability of w
getting marked in current round =1/cd(w) . Sincev is a good
vertex, at leastd(v)/3 neighbors have degree at mostd(v). Let
w be such a neighbor.
Pr(w is marked)= 1/cd(w) ≥ 1/cd(v)
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Fig. 5. Number of rounds taken by the algorithms of Luby and M´etevier on bipartite graphs. In the figure on the left, the X-axis represents the size of each
partition and the total number of edges in the graph. In the figure on the right, the X-axis represents the sizes of the partitions and the total number of edges in
the graph.

Pr(no neighbor ofv is marked)≤ (1− 1/cd(v))d(v)/3 = e
−1

3c .

Lemma 2: If a vertexw is marked, then Pr(w is in MIS)
≥ 1/c.

Proof: If w is marked, then it is not in MIS only if some
high degree neighbor ofw is also marked. Each such high
degree neighbors ofw is marked with probability at most
1/2d(w).
Pr(w is in MIS) = 1−Pr(w is not in MIS)
= 1− Pr(∃u ∈ N(w), d(u) ≥ d(w), u is marked)
= 1− |u ∈ N(w), d(u) ≥ d(w)| ∗ 1/cd(w)
≥ 1− |u ∈ N(w)| · 1/cd(w) = 1− (d(w) · 1/cd(w)) = 1/c

Lemma 3: If v is a good vertex, then Pr(v is deleted)≥
(1− e

−1

3c )/c.

Proof: Combining above results proves this.

Lemma 4:At least half the edges are good.

Proof: For every bad edgee, associate a pair of edges
via a functionf : EB →

(

E
2

)

such that for any two distinct
bad edgese1 and e2, f(e1) ∩ f(e2) = φ. This completes the
proof since only|E|/2 such pairs exist. The functionf is
defined as below.

For each edge(u, v) ∈ E, orient it towards the vertex of
higher degree. Consider a bad edgee(u, v) oriented towards
v. Sincev is bad, the out-degree ofv is at least twice its in-
degree. So, there is a way to pick a pair of edges for every
bad edge.

Lemma 5: In each iteration on an expectation a constant
fraction of edges are deleted.

Proof: Half the edges are good as proved before, and a
good edge is deleted with probability at least(1 − e

−1

3c )/c.
So, on expectationO(log m) = O(log n) rounds suffice for
Luby’s algorithm to finish. This can be extended to show that
this happens with high probability.

Now we try to understand the variation of number of rounds
required to the variablec. Notice as we decreasec thereby
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Fig. 6. Luby with variable probability on Sparse Random graphs, p = 0.2.
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Fig. 7. Luby with variable probability on Dense Random graphs, p = 0.5.
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Fig. 8. Luby with variable probability on Sparse Random Regular graphs of
degree3.
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Fig. 9. Luby with variable probability on Dense Random Regular graphs of
degree30.

increasing the probability of a vertex to get selected in a
round, the minimum probability of a good edge getting deleted
increases. This intuition supports the decrease in number of
rounds required by Luby’s MIS algorithm with the decrease
in c as shown in Figure 6, Figure 7, Figure 8, and Figure 9.
This happens pretty regularly till we increase the probability
to 2/d(v), then it starts to show a constant or rather in some
cases opposite behavior that is the number of rounds starts
increasing with the decrease inc.

V. CONCLUSIONS

Our experiments show that Métivier’s MIS algorithm per-
forms better than Luby’s for almost every graph. We also
noticed in our experiments that the size of MIS produced is
nearly the same for both the algorithms. For most of the graph
Métivier performs nearly twice better in terms of number of
rounds required to compute the MIS. Also the more sparse the
graph the better Métivier performs over Luby.

It can also be observed that both the Luby with random tie
breaking and Luby with high vertex id tie breaking performs
similar for all graphs and considerably better than Luby with
wake/sleep technique.

We can also notice that the number of rounds required
by Luby’s MIS varies largely with the probability used. It
gradually decreases with increasing probability for many cases.
In some cases though, supporting our intuition, the number
of rounds first decreases and then increases as we increase
the probability thereby suggesting that too many nodes getting
selected hinder the decrease in number of rounds required by
the algorithm to finish.
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