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Abstract—Distributed algorithms for computing a maximal algorithm. Similarly, it is sometimes the case that distréal
independent set of a graph have been very popular in the reseeh graph algorithms can finish in fewer rounds than that given
community. Starting with the algorithm of Luby dating back to  out by the analysis. Finally, in the case of MIS algorithms,
25 years, several researchers have focussed on distributddlS maximality does not impose any constraints on the size of
algorithms for general graphs with little success. Only reently, the MIS produced by a particular algorithm. An experimental

Meétevier et al. have proposed an algorithm for MIS in the s . ; .
distributed setting with a round complexity that matches Luby’s study can h'gh“ght the d|fference in the sizes of the MIS
produced by different algorithms.

algorithm asymptotically.

However, very little is known about the relative performance In this paper, we focus on the algorithms of Luby [3]

of the algorithm of Luby and M étevier in practice. Such a study ~ and the algorithm of Métivier et al. [4] to find an MIS in
can throw light on some aspects of the algorithms that are not @ general graph. We consider parameters such as the number

brought out by a theoretical analysis. In this paper, we compre  Of rounds needed by the algorithms and the size of the MIS
implementations of the algorithm of Luby and Métevier and study ~ produced. We also consider several graph classes rangimg fr
their behavior on a class of random graphs and bipartite grafns. random graphs, bipartite graphs, and regular graphs. &urth
Further, we study how varying the probability that a node wishes  \ye study the analytical and experimental effect of modiyin
to join the MIS in the case of Luby'’s algorithm affects the number the probability a node chooses to join the MIS in Luby’s
of rounds required. algorithm [3]. Our study in general indicates that the aition
of Métivier outperforms the algorithm of Luby by a factor of
. INTRODUCTION 2. It is surprising however that the size of the MIS produced

A Maximal Independent Set (MIS) in a gragh= (V, ) does not differ significantly in both algorithms.
is a subsetS C V such thatS is maximal and nodes in The rest of the paper is organized as follows. In Section II,
S are mutual non-neighbors. Computing an MIS is one ofwe describe the algorithms of Luby [3] and Métivier et al. [4
the fundamental problems in distributed computing and ha§ection Il discusses our experiments and their resultstice
attracted the attention of a vast amount of research [3][4]] |V describes a change to Luby’s algorithm and its effect on
[5]. The best known algorithm so far for general graphs arghe runtime. The paper ends with some concluding remarks in
the algorithm of Luby [3] that runs i (logn) probabilistic ~ Section V.
rounds wheren is the number of nodes in the graph. Only
recently, Métivier et al. [4] proposed another algorithiatt [I. PRELIMINARIES

t00 has ar0)(logn) round complexity. Below we describe both the algorithms and give pseudo

Despite the immense research interest in distributed algasode for them.
rithms for MIS, very little is known on how these algorithms
work in practice. For instance, the algorithms of both LubyA. Luby's MIS
[3] and Métivier et al. [4] have requir®(logn) distributed

rounds asymptotically. They are to date the fastest known L_Jsing Luby’s algor!thm, a maXimal independent gebf.
algorithms for computing an MIS in a general graph. TheverticesV’ of a graphG is computed in an mcrer_nental fashion
as follows. In each round, every currenthcti ve vertex

approach of these two algorithms, though both are rau’]dc‘ﬂﬁmzeselects itself with probabilityt /2d(v) whered(v) denotes the

is slightly diff t. Métivier's algorith id ae X . :
1S Slghtly crreren erviers aigoriinm consicers & current degree of, that is the number adct i ve neighbors

to be in MIS if the random choice of this node is a local If t i“hb d t selected in th d
maxima. The algorithm of Luby however considers a node tg'2S- If two neighbors andw get selected in the same round,
then the node with smaller degree discards its earlier atec

be in MIS as follows. Each node opts to be in MIS with aties are broken arbitrarily. Now it is ensured that all the

ﬁ;?bgggg)é Icv\{tirst)%l%/hpéggogg?nrlgl égtlit;gdt%gtr)zei'nlrt]hceaf/le;gs’thenvertices still selected are independent, that is no two eifrth

the algorithm prefers higher degree vertices to be in the.MIS&reé neighbors. So we can include them in MIS and remove

Both algorithms proceed in a similar way by removing nodedN€m and their neighbors from the graph, thereby making
selected in one round along with their neighbors. themi nacti ve and excluding them from consideration in

remaining rounds. This goes on until all the vertices hawnbe
An experimental study of the relative speed of algorithmsremoved from the graph. It can be proved that expected number

can offer several lessons. Especially in the context of lgrapof rounds required to get an MIS (when all the vertices have

algorithms, one can study the behaviour of the algorithm®een removed from the graph)@log n), n being the number

on various graph classes. It is possible that an algorithnof vertices in the original graph. Below we give the pseudo

is much faster on some graph classes compared to anotha&ligorithm for Luby’s MIS.



Algorithm MIS-Luby(G = (V, E)) C. Networkx

?egln [ —¢:G — G We useNetworkx[2] to generate graphs. Netwc_)rkx is a

2 while ’(G’ is not empty) do Python language software package for thg creation, manip-

3 Choose a random set of verticész G by ulation, and study of the structure, dynamics, and f,u.ns_t|on
selecting each active vertex v independently of co_mplex networks. We compare Luby’s and Métivier's
with probability 1/2d(v) algorithm on .randor.n, random regular as well as bipartite

4. For every edge( v) € E(G') if both endpoints graphs of various sizes. Below we show _the prototypes of
are inS: then remove the vertex with lower functions of Networkxused to compute required graphs.
degree fromS(Break ties arbitrarily) gnp_random graph(n, p, seed=None, directed=False)

S. I—TUS,G <G\ (SUN(S)) Returns a random grapfi(n, p) with n vertices. It chooses
i.e. G’ is the induced subgraph on each of the possible edges with a probabilitin the graph.
V'\ (SUN(S)) whereV' =V (G")

6. Output/ random.regular_graph(d, n, seed=None)Returns a ran-

End dom regular graphG(d,n) with n vertices each having

degree.

There are two modifications to Luby’s algorithm whose
impact is also studied. One such modification is to use a tie;
breaking rule when two nodes are selected in the same roun
We study two versions in this modification.

bipartite_random graph(n, m, p, seed, directedReturns
random bipartite grapl¥(n, m) with n nodes in its first
ipartite set;n in the second set angd being the probability
of creating an edge between two nodes in different set.

1) LubyRandom: In version LubyRandom, we use a

random tie breaking rule. IIl. EXPERIMENTS AND RESULTS
2) LubyHighID: In version LubyHighlD, we select the . _ L
node with a higher identifier. We implemented the algorithms of Luby and Métivier

et al. in ANSI C. The program is written as a sequential
In a second modification we introduce a technique whergyrogram. The actions of each node is simulated by a sequentia
nodes that are stilhiwake choose with a certain probability execution one after the another. This does not affect the
to participate in a given round. This probability is varied behavior of the algorithms and since the measure of intésest
from 1/2d(v) to 1/8d(v). This version is termed asuby-  the number of rounds, this does not affect the correctness of

WakeSleep the experiments. For generating random numbers, we used the
e output of the SHA algorithm as a random number between 0
B. Metivier's MIS and 1, both inclusive. The output of SHA is known to possess

Métivier's MIS algorithm has the same bound on numberbette_r un_iformness properties compared to the standara
of rounds required as of Luby’s. In each round of Métivier's unction in ANSI C.

algorithm, theacti ve vertices choose a random number.  while presenting the results of the experiments we per-
Subsequently, every vertex sends and receives the rando@gymed each experiment multiple times depending on the size
number chosen by its neighbors in this round. Only the vestic of the instance and averaged the results. This gives us noug
which have the maximum number in the neighborhood remaingonfidence on the validity of the empirical analysis. Sine w
selected. It is trivial to see no two vertices which are nb@s  can compare the number of rounds independent of the machine

can be selected together in one round. Hence the set of nodggeed and characteristics, we do not report on the exadisdeta
selected in any round will be independent. This set is inetld of the machine.

in the MIS and these vertices along with its neighbors are
removed from the graph, hence are not considered in thi Result
remaining rounds. This goes on until there are no more \estic ™ esults

ir_l the graph. The_independent_ set selecte_d W_iII be_ maximal |n our experiments, we use a variety of graph classes
since every node in the graph is removed is either in the sghcluding random graphs, bipartite graphs, and regulaphpa

or has a neighbor in the set. It can be proved that Métivier'sthe results of our study on these graphs are presented in the
MIS is also expected to finish i®(logn) rounds. Below we  following subsections.

present the pseudo code of the algorithm. ]
1) Random GraphsWe first show the number of rounds

Algorithm MIS-Metivier(G = (V, E)) taken by the two algorithms on sparse random graphs gener-
Begin ated withp = 0.2 in Figure 1. The plot labelledubyHighlD

1. I — ¢ G — G represents Luby’s algorithm with a tie breaking rule prefer
2. while (&’ is not empty) do the larger vertex ID. As can be seen, this does not have
3. S — ¢ much impact on the number of rounds compared to the
3. Every vertexv € G selects a random numbeg LubyRandom version. It can also be noticed from Figure 1
4. If v has a local maximum, addto S. that Métivier's algorithm runs faster than all variantd aiby’s

5. I —TUS, G —G\(SUN(S)) ie. G is the algorithm. The difference in the two algorithms is roughly a

induced subgraph obi’ \ (SUN(S)) ; V' = V(¢’) factor of 2.

g' d Output! Isee http://csrc.nist.gov/groups/STM/cavp/documelntééha256-384-
n 512.pdf
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Luby vs Metivier on Random Regular Dense Graphs

A similar effect can be seen on random graphs generated 0

with a slightly higher probability 06.5. This result is shown in LubykighID ~-
Figure 2. As can be seen, the version with a wakeup probgbilit 25t Lubumandon 6
takes more rounds. It therefore seems that having nodes forg LubyWakeSleep -8
a round probabilistically is not helping break symmetry. g
g
8
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fashion in the case of bipartite graphs. Perhaps, this can be
. 000 2000 3000 2000 m000 2000 explained by the fact thgt bipartite graphs have_a large MIS i
Number of Vertices general and this is helping break symmetry quickly.
Fig. 2. Luby vs Métivier on Dense Random graphs- 0.5. IV. CHANGING THE SELECTION PROBABILITY IN LUBY’S

ALGORITHM
2) Regular GraphsAnother class of graphs that we experi- - )
mented with is random graphs with a regular degree. Thisshelp L€t the probability for a node’ with degreed(v) to get
us study if all nodes having the same probability of being inselected in a round be/cd(v) for a constant. Let us define a
an MIS has any effect on the number of rounds required by th¥ertexv to be agoodvertex if at leastl /37 of its neighbors
algorithms of Luby and Métivier. We experimented with both have degree less that{v). We also define an edge to be a
sparse and dense random regular graphs. The results of o@@od edge if at least one endpoint of it is a good vertex.

experiments_ are shown in Figure 3 for sparse random regular Every good vertex has a lot of low degree vertices whose
graphs and in Figure 4 for dense random regular graphs. As capgree is bounded by(v). So with good probability at least
be seen in this case too, a random tie breaking rule workerbett ;e of these vertices will make it to the independent Set

for implementing Luby’s algorithm. Further, having a waReu therepy deleting qood vertex and therefore good edges
probability is not helpful. Finally, the algorithm of Méter y "9 g vertex _ g ges.
is faster than Luby’s algorithm by a factor of 2. Moreover, ~Lemma 1:For every good vertex with d(v) > 0, the
sparse graphs are easy to break symmetry in compared to derfgebability that some neighbar of v gets marked is at least

graphs. 1—e3e.

3) Bipartite Graphs: Another class of graphs that we used Proof: Consider one such neighbar. Probability of w
in our experiments are bipartite graphs. We generatedtifppar getting marked in current round c¢d(w) . Sincev is a good
graphs with equi-sized partitions and also with unequedesi  vertex, at least/(v)/3 neighbors have degree at mdsv). Let
partitions. The results of this experiment are shown in Fegu w be such a neighbor.

5. It is noticed that both algorithms behave in a near-similaPr(w is marked)= 1/cd(w) > 1/cd(v)
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Pr(no neighbor of is marked)< (1 — 1/cd(v))4®)/3 = ¢35z .

[
Lemma 2:1f a vertexw is marked, then Ptf is in MIS) Effect of Probability on Luby Rounds
35
>1/c. 1/4d(v) ==
. . . . L 2d (v i
Proof: If w is marked, then it is not in MIS only if some 0% =
high degree neighbor ofy is also marked. Each such high s/alv) =

25 1
degree neighbors ofv is marked with probability at most
1/2d(w).

Pr(w is in MIS) = 1—Pr(w is not in MIS)

=1—Pr(3u € N(w),d(u) > d(w), uis marked)

=1—|u€ N(w),d(u) > dw)| *1/cd(w)

21—|ueN(w)|-1/cd(w)=1—(d(w)'1/0d(w)):1/c. . /27—‘<8=5 ]
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Rounds required
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Proof: Comblmng above results proves this. o Fig. 6. Luby with variable probability on Sparse Random gsmp = 0.2.

Lemma 4:At least half the edges are good.

Proof: For every bad edge, associate a pair of edges
via a functionf : Ep — (%) such that for any two distinct
bad edges; andes, f(e1) N f(e2) = ¢. This completes the
proof since only|E|/2 such pairs exist. The functioyfi is

. Effect of Probability on Luby Rounds
defined as below. .

For each eddge:,v) € E, orient it towards the vertex of
higher degree. Consider a bad edde,v) oriented towards
v. Sincev is bad, the out-degree af is at least twice its in-
degree. So, there is a way to pick a pair of edges for every
bad edge. ]

Lemma 5:In each iteration on an expectation a constant
fraction of edges are deleted.

Rounds required

Proof: Half the edges are good as proved before, and a

good edge is deleted with probability at ledst— eg—cl)/c.

So, on expectatio®(logm) = O(logn) rounds suffice for 0 e e e e
Luby’s algorithm to finish. This can be extended to show that

this happens with h'gh pI’Obablllty. n Fig. 7. Luby with variable probability on Dense Random gsaph= 0.5.

Now we try to understand the variation of number of rounds
required to the variable. Notice as we decreasethereby
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increasing the probability of a vertex to get selected in a
round, the minimum probability of a good edge getting delete
increases. This intuition supports the decrease in number o
rounds required by Luby’'s MIS algorithm with the decrease
in ¢ as shown in Figure 6, Figure 7, Figure 8, and Figure 9.
This happens pretty regularly till we increase the proligbil

to 2/d(v), then it starts to show a constant or rather in some
cases opposite behavior that is the number of rounds starts
increasing with the decrease in

V. CONCLUSIONS

Our experiments show that Métivier's MIS algorithm per-
forms better than Luby’s for almost every graph. We also
noticed in our experiments that the size of MIS produced is
nearly the same for both the algorithms. For most of the graph
Métivier performs nearly twice better in terms of number of
rounds required to compute the MIS. Also the more sparse the
graph the better Métivier performs over Luby.

It can also be observed that both the Luby with random tie
breaking and Luby with high vertex id tie breaking performs
similar for all graphs and considerably better than Lubyhwit
wake/sleep technique.

We can also notice that the number of rounds required
by Luby's MIS varies largely with the probability used. It
gradually decreases with increasing probability for maages.
In some cases though, supporting our intuition, the number
of rounds first decreases and then increases as we increase
the probability thereby suggesting that too many nodesngett
selected hinder the decrease in nhumber of rounds required by
the algorithm to finish.
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