
iCopyDAV

Integrated platform for Copy number variations –

Detection, Annotation and Visualization

Tutorial

19 February 2018

PrashanthiDharanipragada, SriharshaVogeti and Nita Parekh

Center for Computational Natural Science and Bioinformatics

International Institute of Information Technology, Hyderabad, India

1. AboutiCopyDAV
Integrated platform for Copy number variation – Detection, Annotation and Visualization

(iCopyDAV) enables the user to identify copy number variations (CNV), an important category

of structural variants, in whole genome sequence data. The pipeline considers Depth-of-

Coverage based approach for CNV detection due to its ability to predict absolute copy number of

the variant. The pipeline doesn’t require any matched-control sample and can be used for CNV

detection in samples from species other than human (however, functional annotation is available

only for human genome assembly hg18/hg19). iCopyDAV platform has a modular-framework

with 7 main executables for CNV detection, annotation and visualization:

a) calOptBinSize: Calculates optimal bin size for a given sequencing coverage sample.

b) prepareData: Generates coordinate, GC and mappability score files according to the desired

bin size

c) pretreatment: Normalizes GC content either by Loess regression or Median approach, and

filters low mappable regions for a given mappability cut-off threshold. A GC profile before

and after correction is also generated.

d) runSegmentation: Bins of similar read depth values are segmented together either by

Circular Binary Segmentation (CBS) approach or Total Variation Minimization (TVM)

approach or both.

e) callCNV: Calls segments with read depth values deviating from that of normal mean and

assigns an absolute copy number to each variant predicted.

f) annotate: Information about genomic elements (protein coding genes, lincRNA, enhancers,

miRNA target sites), structural annotations (segmental duplications, tandem repeats,

heterochromatin and telomeric positions), clinical relevance (OMIM, ClinVar, DECIPHER

and ExAC) and Known CNVs (DGV) overlapping the predicted CNVs are listed next to each

predicted variant.

g) plot: CNVs distribution across the chromosome or for a given coordinates can be visualized

using this function.

User may type ‘--help’ next to any of the executable and syntax for each function can be viewed.

Detailed step-by-step instructions for installation and execution are given below.

2. Installation
The pipeline is linux-based and works with any latest version. iCopyDAV can be used either by

installing the complete package in Docker available at the iCopyDAV website

(http://bioinf.iiit.ac.in/icopydav/) or installing via source code, available at GitHub

(https://github.com/vogetihrsh/icopydav).

1. iCopyDAV via Docker

a. Install docker on your machine (Community version) from the link below:

https://docs.docker.com/engine/installation/

b. Download the tar file from the following link:

http://bioinf.iiit.ac.in/icopydav/

c. Import the tar as a docker image using the docker import command:

sudo docker load--input iCopyDAV.tar

To verify the image has been imported use docker images command. You will see an image ID

created for the docker.

d. Then create a container with the following command by using the image ID.

Sudo docker run -i -t <Image ID>

You are now in the container and ready to work. The source code and executables for

iCopyDAV are available in ‘/root/’. Change the directory by using following command:

cd /root/

e.In a separate window, query your docker container ID and transfer your desired files from the

working folder using the following command:

sudo docker ps

The above command displays container ID, image ID along with the status of the docker.

dockercp<Desired file>containerID:.

The above command transfers the files into the root system (‘/’) of the docker. Files from this

location can be directly accessed or can be moved (using mv) to iCopyDAV folder and pipeline

can be run.

http://bioinf.iiit.ac.in/icopydav/
https://docs.docker.com/engine/installation/
http://bioinf.iiit.ac.in/icopydav/

f. Once the CNVs are predicted, annotated and visualized using iCopyDAV, files can be

transferred back to the desktop by using the following command:

docker cp containerID:/root/icopydav/files .

Please note files will not be saved for a given container ID. Users need to transfer the

results back to the desktop, else, results will be erased upon using the Docker next time.

g. To close the docker, type ‘exit’.

2. iCopyDAV from the source code

a. Download the following dependencies to run iCopyDAV from the source code.

● R Dependencies:

○ Bioconductor packages: DNAcopy, GenomicAlignments, rtracklayer, quantsmooth

 In R console, type the following:

>source("http://bioconductor.org/biocLite.R")

>biocLite("DNAcopy","GenomicAlignments", "rtracklayer","quantsmooth")

○ R package: ParDNAcopy

 (https://cran.r-project.org/web/packages/ParDNAcopy/index.html)

 In R console, type the following:

 >install.packages("ParDNAcopy")

● Samtools (http://samtools.sourceforge.net/)

● Bedtools (http://bedtools.readthedocs.io/en/latest/)

● OpenMPI (https://www.open-mpi.org/)

Samtools, Bedtools and OpenMPI must be added to the PATH variable by using the following

command:

export PATH = $PATH:/usr/bin/samtools

Similarly Bedtools and OpenMPI must be added to PATH variation in user environment, so that

these tools can be used in iCopyDAV directly.

b. Download the source code by clicking ‘Download’ button from

https://github.com/vogetihrsh/icopydav and then extract the zip file as shown below

unzip iCopyDAV-master.zip

cd iCopyDAV-master

make

https://cran.r-project.org/web/packages/ParDNAcopy/index.html
http://samtools.sourceforge.net/
http://bedtools.readthedocs.io/en/latest/
https://www.open-mpi.org/

Download the annotations folder from the iCopyDAV website ((http://bioinf.iiit.ac.in/icopydav/)

and add the contents of the folder into ‘annotations’ folder available in iCopyDAV.

http://bioinf.iiit.ac.in/icopydav/

3. Workflow

We demonstrate the usage of our pipeline by considering a whole genome sequence sample

(Chromosome 21, 6x sequencing depth) mapped to hg18 human genome reference assembly.

The test file can be downloaded from the iCopyDAV website.

(i) Calculating optimal bin size

Files required: config file and alignment file (BAM)

Usage: calOptBinsize -c <config file> -i <input BAM>

Output: Optimal bin size number

In iCopyDAV, the user may set the bin size judiciously depending on the sequence coverage and

the size of the CNVs to be detected (default 100 bp). For instance bin size ~ 500 bp may be

appropriate for low sequencing depth (4-6×), ~100 bp for medium sequencing depth (20-30×)

and ~ 30 bp bin size for very high coverage data (~ 100×). Alternately, in iCopyDAV, the user

may use the function calOptBinSize. Function calcOptBinSize function which determines ideal

bin size based on modeling the reads across the genome using negative binomial distribution.

Previous studies detected CNVs under the assumption that all reads were randomly generated

from the genome, following a Poisson distribution. However, from an extensive study carried by

Miller et al [1], it was observed that the read distribution deviates from Poisson distribution with

unequal mean and variance. The reads are instead modelled based on negative binomial

distribution or mixture of Poisson distributions with mean value λ, which is equal to n*b/g,

where n = total number of reads, b = bin size and g = genome size. The variation in λ accounts to

excessive variance which has been observed This variance can be independently controlled

keeping the mean constant and is given as an for size parameter = λ/(d-1) in the config file (‘-c’)

where d is overdispersion. The chromosome size specific to the reference assembly is added in

config file. Distributions are generated using the expected number of reads with copy number of

one, two, and three, and parameters ‘percCNGain’ and ‘percCNLoss’ (default: 0.05) are included

in the config file, help in accurate modeling of the reads and minimizes the number of bins that

are misclassified. The smallest bin size possible is progressively estimated for the given false-

discovery rate (default: 0.01) in config file [1]. A sample config file is provided in the source

package of the pipeline. Since negative binomial distribution overestimates the bin size, the user

may consider this as an upper limit for bin size.

(ii) Data Preparation

Files required: map score file and gc score file, genome file

Usage: prepareData -m <map score file> -g <gc score file> --win <desired window size> --

genome_file<Genome file> -o <Output filename prefix>

Output: ‘.bin’, ‘.map’, ‘.gc’ for given window size

User may choose desired bin size (Default: 100 bp) or consider optimal bin size generated using

the function calOptBinSize. Function prepareData assists in generating coordinate, gc and

mappability score files that are essential for data pre-treatment.

Coordinate file: For Chromosome 21, with reads mapped to Human reference assembly hg18, a

genome file must be generated as shown in the following format:

chr21 46944323

where chromosome number is tab-separated by size of chromosome corresponding to mapped

assembly (here, hg18) are listed in a file (chr21.gen). For reference assemblies, hg18 and hg19,

genome files are available on the iCopyDAV website.

Mappability file: Mappability scores for a genome must be supplied as an input. These scores

are highly specific to the reference genome assembly to which reads are aligned and also, rely on

length of reads generated in the NGS experiment. Mappability score of a bin range from 0 to 1,

with regions of low mappability score (< 0.5) correspond to repetitive and low-complexity

regions in the genome. Mappability scores for read length 100 bp and bin size 100 bp for human

reference genome hg18/hg19 are available at the iCopyDAV portal. In case user wish to use bin

size other than 100 bp, the mappability scores suitable to bin size of the interest can be converted

using prepareData function.For different read length, user may download mappability

annotation tracks from UCSC genome browser [2]. The user may also generate mappability

scores for read length and genome of interest using GEM library [3].

GC content file: For correcting GC bias, user must supply a GC content score file in data pre-

treatment step. The file must contain a column of GC content score per bin with values ranging

0-1. GC content scores for bin size 100 bp for human reference assembly hg18 and hg19 are

available at the iCopyDAV website. For the demonstration, we consider a window size of 1000

bp and data files (coordinate, gc and mappability files) can be generated using following

command:

./prepareData -m chr21.dat -g chr21.gc --win 1000 --genome_file chr21.gen -o chr21

Running this command results in three files: chr21_1000.bin, chr21_1000.map and

chr21_1000.gc (shown in Figure 1) that are ready to use for data pre-treatment step.

Figure 1: Snapshot of Coordinate, Mappability score and GC content score files calculated

for Chromosome 21, read length 100 bp and bin size 1000 bp (Values for Mappability and

GC content files are not available in the initial coordinates (above) due to acrocentric

nature of Chromosome 21

(iii) Data Pre-treatment

Files required: alignment file (BAM), coordinate file, mappability file and GC content

score file

Usage: pretreatment -i <input BAM> -o <output Prefix> --mapfile<mappability file> -z

<bin file> --mapThres<mappability cut-off value> --medianGC (or) --loessGC --gcfile<gc

file>

Output: ‘_pCNVD.bincor’, ‘_pCNVD.input’

GC bias correction and filtering low mappable regions are carried out in pretreatment module. A

user defined nomenclature (‘Test’ in our demonstration) is provided as output prefix (-o) and

same output prefix must be used for subsequent steps (segmentation and variant calling). Along

with the alignment file (-i), user needs to supply a coordinate (-z), GC content (--gcfile) and

mappability score files (--mapfile or –m) generated in prepareData module. Mappability is

corrected by considering those bins with score equal or higher than the cut-off threshold

provided (default: 0.5). Mappability score cut-off can be changed according to the user by adding

an optional parameter ‘--mapThres’ and appropriate cut-off value (0-1). We considered 0.6 as

mappability threshold cutoff for the demonstration. The pipeline offers two different algorithms

for GC content correction: (i) Loess regression [4] and (ii) Median approach [5].

./pretreatment -i Input.bam -o Test -z chr21_1000.bin --mapfile chr21_1000.map --

mapThres 0.6 --medianGC --gcfile chr21_1000.gc

The above command carries out GC bias correction using Median approach. The pre-treatment

step results in two intermediate files ‘Test_pCNVD.bincor’ that contain bin coordinates and

‘Test_pCNVD.input’ with corresponding normalized and filtered read depth values, as shown in

Figure 2.

Figure 2: A snapshot of (a) Test_pCNVD.bincor and (b) Test_pCNVD.input intermediate

files generated as a result of pretreatment with Median-based GC correction and Mth =0.6

User may use the following command for GC correction using Loess regression and the results

are different from Median-based GC correction approach, as seen from Figure 3.

./pretreatment -i Input.bam -o Test --mapfile chr21_1000.map --mapThres 0.6 -z

chr21_1000.bin --loessGC --gcfile chr21_1000.gc

Figure 3: A snapshot of (a) Test_pCNVD.bincor and (b) Test_pCNVD.input intermediate

files generated as a result of pretreatment with Loess regression for GC correction and Mth

=0.6

Please note that when a GC correction approach (--loessGC/medianGC) is not given in the

command, GC correction of the reads do not take place and only reads in the regions with low

mappability scores (<Mth) are filtered out.

(iv) Segmentation

Files require: ‘_pCNVD.bincor’, ‘_pCNVD.input’

Usage: runSegmentation -o <output prefix> <one or both segmentation flags (-t, -d)> -p

<no. of processors>

Output: ‘_pCNVD.output’

Bins with similar read depth values are identified and merged in segmentation step using

runSegmentation function. Segmentation in iCopyDAV can be carried out using either (a)

agglomerative approach, Total Variation Minimization (TVM) [6] or (b) Circular Binary

Segmentation (CBS) [7], a divisive approach or both. Type of segmentation, ‘-t’ for TVM or ‘-d’

for CBS or both must be supplied to the function along with the same output prefix used in

preprocess module. An optional parameter ‘-p’ may be set (default: 32) for parallelization of

segmentation process, helps in faster segmentation in the presence of large number of processors.

./runSegmentation -o Test -t

The above command carry out segmentation using TVM approach (agglomerative) and results in

Test_tvm_pCNVD.output file, that contains an average score of read depth across the bins which

are segmented as shown in the Figure 4 below.

Figure 4: A snapshot of Test_tvm_pCNVD.output file generated as a result of segmentation

using TVM approach

The following command is used when user wish to carry out segmentation using CBS (divisive)

approach.

./runSegmentation -o Test -d

This generates an output file as Test_cbs_pCNVD.output, as shown in Figure 5.

Figure 5: A snapshot of Test_cbs_pCNVD.output file generated as a result of segmentation

using CBS approach

The user may also run TVM as well as CBS simultaneously by using the following command.

./runSegmentation -o Test -t -d

As a result, files ‘Test_tvm_pCNVD.output’ as well as ‘Test_cbs_pCNVD.output’ are generated

one after the other.

(v) Variant calling

Files required: ‘_pCNVD.output’

Usage: callCNV -o <output prefix> -z <bed file containing bins><genome flag (--hg18 or --

hg19)>

Output: ‘_pCNVD.bed’

Segmented regions with abnormal copy number are identified and reported with their start/end

coordinates, type of event (duplication as 1 or deletion as 0) and absolute copy number using

callCNV function. The mean of read depth across the chromosome is calculated and any

deviation (higher or lower than copy gain and copy loss thresholds respectively) from this mean

are considered as CNVs. For both TVM and CBS approaches, CNVs are reported only when a

minimum of two bins have similar read depth values, hence, reducing the number of false

positives. For calling CNVs from the ‘_pCNVD.output’ file, coordinate file (z) generated in the

beginning the output prefix (‘-o) and genome flag (--hg18 or --hg19) must be provided by the

user. Adding genome assembly parameter helps in removing CNVs in chromosomal gaps, if at

all falsely generated by TVM or CBS as a CNV.

./callCNV -o Test -z chr21_1000.bin --hg18

The command generates CNV calls in ‘_pCNVD.bed’ output file. A separate command for

calling CNVs from TVM and CBS is not necessary. The function automatically identifies

‘.output’ files from both the methods and generates CNVs for TVM and CBS approaches in

separate files. callCNV results in files similar to Figure 6.

Figure 6: A snapshot of CNV calls (Test_cbs_pCNVD.bed) made using CBS approach for

segmentation and loess regression for GC correction and Mth=0.6 considered for data pre-

treatment

(vi) CNV annotation

Files required: Any bed file (tab-separated)

Usage: ./annotate -i <input bed file> -o <output prefix> <genome flag (--hg18 or --hg19)>

Output: ‘_annotated.bed’

Once CNVs are generated from either TVM or CBS or both the methods (‘.bed’), the user may

be interested to understand the structural and functional significance of the CNVs detected. The

pipeline provides a basic CNV annotator (annotate) which gives information about four sets of

annotations viz. (1) Functional elements that includes protein coding genes, lncRNA, regulatory

elements such as enchancers, miRNA target sites spanning the CNV (with minimum of 1 bp

overlap), (2) clinical features (ClinVar, OMIM, DECIPHER and ExAC), (3) structural

annotations such as segmental duplications, tandem repeats, position of CNV (whether in

telomeric or heterochromatin region) and finally, (4) list of already known CNVs reported in

Database of Genomic Variants (DGV) spanning these CNV regions. These features help in

filtering known CNVs and characterizing novel CNVs predicted from the pipeline. The function

annotateresults in ‘_annotated.bed’ file.

./annotate -i Test_TVM_pCNVD.bed -o Test --hg18

This result in a tab-separated Test_annotated.bed file which contains predicted CNVs along with

their annotations as shown in Figure 7. The tab-separated file can be visualized using any

spreadsheet application including MS-Excel or Open Office Calc.

Figure 7: Snapshot of annotation file generated showing few of the annotations. Symbol ‘.’

indicates no annotation available for the given CNV

(vii) Plotting CNVs across the chromosome

Files required: ‘.bed’ with list of predicted CNVs

Usage: plot -i <input bed file> -o <output file><genome flag (--hg18 or --hg19)>

plot -i <input bed file> -d --start <start position> --end <end position> -o <output

file><genome flag (--hg18 or --hg19)>

Output: A png file with CNVs plotted with copy gain in blue and copy loss in red

User can also use the pipeline for visualizing the CNVs predicted using plot function.

Distribution of CNVs along the chromosome or a region of interest (user defined coordinates)

and on corresponding ideogram is generated using the function.

./plot -i Test_cbs_pCNVD.bed -o CNV_distribution --hg18

The above command generates a CNV plot as shown below in Figure 8. Gain is represented in

blue and deletion in red. Plot is generated in a .png file.

Figure 8: CNVs distribution predicted using iCopyDAV(Loess regression for GC

correction + Mth=0.6 + CBS approach) across Chromosome 21 of Test sample generated as

‘CNV_distribution.png’

./plot -i Test_cbs_pCNVD.bed -d --start 10000000 --end 20000000 -o

CNV_distribution_coordinates --hg18

The above command generates a CNV plot for given set of coordinates as shown below in Figure

9. Gain is represented in blue and deletion in red.

Figure 9: CNVs distribution predicted using iCopyDAV across Chromosome 21 of Test

sample generated as ‘CNV_distribution_coordinates.png’

References
1. Miller CA, Hampton O, Coarfa C, Milosavljevic A. ReadDepth: a parallel R package for

detecting copy number alterations from short sequencing reads. PloS One. 2011;6: e16327.

doi:10.1371/journal.pone.0016327

2. Karolchik D, Hinrichs AS, Kent WJ. The UCSC Genome Browser. Curr Protoc Bioinforma

Ed Board Andreas Baxevanis Al. 2009;CHAPTER: Unit1.4.

doi:10.1002/0471250953.bi0104s28

3. Derrien T, Estellé J, Sola SM, Knowles DG, Raineri E, Guigó R, et al. Fast Computation and

Applications of Genome Mappability. PLOS ONE. 2012;7: e30377.

doi:10.1371/journal.pone.0030377

4. Cleveland WS, Loader C. Smoothing by Local Regression: Principles and Methods.

Statistical Theory and Computational Aspects of Smoothing. Physica-Verlag HD; 1996. pp.

10–49. doi:10.1007/978-3-642-48425-4_2

5. Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and accurate detection of copy

number variants using read depth of coverage. Genome Res. 2009;19: 1586–1592.

doi:10.1101/gr.092981.109

6. Duan J, Zhang J-G, Deng H-W, Wang Y-P. CNV-TV: a robust method to discover copy

number variation from short sequencing reads. BMC Bioinformatics. 2013;14: 150.

doi:10.1186/1471-2105-14-150

7. Olshen A, Seshan V. DNAcopy: DNA copy number data analysis. Available:

http://bioconductor.org/packages/DNAcopy/

